
Profile functions used in Jana2006 
 
The profile functions are used to model a shape of diffraction peaks. It is a function of the 
argument hθθ −=x , the difference of the actual position from the expected position of the 
diffraction h. There are three possibilities for the profile function in Jana2006.   
 
 
Gaussian function: ( ) ( )22 2/exp GG bxaxG −=     (1) 
 
the coefficients Ga  and Gb  can be expressed as a function of FWHM called GH  : 
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Lorentzian function: ( )
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similarly as for the Gaussian the coefficients La  and Lb  can be expressed as a function of 

LH  :  
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Pseudo-Voigt function:   ( ) ( ) ( ) ( )xGxLxpV ηη −+= 1    (5) 
 
Both FWHM for Lorentzian and Gaussian part in the above formula are supposed to be 
same calculated from the equation: 
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The second parameter η : 
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Angular dependence of FWHM 

 
The FWHM parameters are dependent on the scattering angle. The Gaussian GH  is 
composed from five terms: 
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The first three terms account for basic broadening by slits, wave length dispersion and 
influence of monochromator as described by Cagliotti, Pauletti & Ricci 1958 



(Nucl.Instrum., 3, 223). The forth term is the Scherrer coefficient for Gaussian broadening. 
It should be noted that only U and W or P and W or P and U can be refined together to 

avoid singularity caused by the trigonometry relationship: 
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term accounting for anisotropic strain will be discussed separately. 
 
The Lorentzian Lb   is composed from five terms as well: 
 

( ) ( ) AYeXeL YYXXb Γ++++= ζθφθφ tancoscoscos  (9) 
 
The X terms accounts for Lorentzian Scherrer particle broadening. X  and eX  stands for 
isotropic and anisotropic part, respectively. Xφ  is the angle between the diffraction vector 
and the broadening direction. 
The Y terms describe strain broadening and the meaning of the constants is analogical to 
those for particle broadening.  
The last term stands for the Stephen's stain anisotropy and it could not be combined with 

eY .         
 
Anisotropic peak broadening as introduced by P.W.Stephens 
 
The phenomenological model is based on a general tensor expression in which the 
anisotropic strain is described by a symmetrical 4th order tensor: 
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The first term is just a general tensor expression where Landau summation convention is 
used and which allows a simple derivation of symmetry restrictions similar to those for 4th 
order ADP parameters. The second term has an explicit form as used by Stephens in which 
summation is restricted to 4=++ LKH .  
Using the Bragg equation we can get finally for the contribution to FWHM : 
 

( )[ ] θσ tan,, 2212 dlkhA =Γ     
 
The ratio in which is the broadening is included to Gaussian and to Lorenzian part is 
( ) ζζ−1 .  
 
Jana2000 uses the notation similar to that in GSAS: 
 
U → GU, V → GV, W → GW, P → GP 
 

eXX ,  → LX, LXe,  eYY ,  → LY, LYe 
 
The Stephens' parameters are chosen in analogy of his paper - J.Appl.Cryst. (1999), 32, 
281-289.   
 
 
 
 



 
Different R values used in Jana2006 
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where the weights are calculated from standard uncertainties of profile intensities: 
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where ( ) iii bobsyobsy −=′ )(   and ( ) iii bcalcycalcy −=′ )(  are intensities corrected for 
background. 
 
 
The conventional structural R values are calculated after le Bail separation. The R values 
based on F and I are listed for both all and observed reflections. The R factor based on F 



are ( )obsRF , ( )obswRF , ( )allRF , ( )allwRF . Those based on intensities are ( )obsRB , 
( )obswRB , ( )allRB , ( )allwRB . 

 
 
 
 
 
 
 
 

Extraction of Fobs and σ( Fobs) from powder profile 
 
Powder diffraction the ( )obsFhkl  values for calculation of Fourier maps, structural R values 
and for MEM are to be derived from the observed and calculated powder profile and 

( )calcFhkl  as follows from the temporary structural model. From all profile points to which 
the reflection (h,k,l) contributes we can write: 
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iL contains the Lorentz, polarization and multiplicity factor of the reflection ( )lkh ,,  

iA is an absorption factor 

iR is a roughness correction 

( )lkhPi ,, is the preference orientation function 

( )lkhi ,,Ω  is the reflection profile function 

 

This means that for all profile points to which the reflection ( )lkh ,,  makes non-zero 
contribution we have ( )obsF ihkl

2
, :   

 

( ) ( )
( ) ( )calcF
calcy
obsyobsF hkl

i

i
ihkl

22
, .

′
′

=  

 
Then the final value ( )obsFhkl

2  and ( )[ ]obsFhkl
2σ can be calculated as an average and standard 

error. However, as profile points do not have same experimental accuracy, two methods 
how to suppress undesired fluctuations:   
 
1. For calculation of averaged values only profile points to which the relevant reflection 

( )lkh ,, contributes significantly are used. As a criterion we are using values of the 
profile function ( )lkhi ,,Ω  which must by at least 10% of its maximal value.  

 
2. In the average procedure uses weights based on experimental standard uncertainties: 
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The weights iw  are derived from the estimated values of standard uncertainties of the 
expression: 
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Following the propagation rule we have: 
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the values ( )[ ]calcyiσ  and [ ]ibσ  are estimated by from experimental ( )[ ]obsyiσ : 
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then for ( )Y2σ  we have: 
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Similar method is use for estimation of ( )[ ]obsFhkl
2σ :   
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This method combines experimental standard uncertainties expressed by weights with a 
profile fit. In the case that peaks are too sharp it could be preferable to concentrate only on 
experimental uncertainties and calculate ( )[ ]obsFhkl

2σ by the error propagation formula:               
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This equation follows from the expression for ( )obsFhkl
2 : 
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and application the error propagation theorem under assumption that term in the 
summation have zero correlations: 
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Particle size and strain parameters as follows from Jana profile parameters 

 
The particle size and strain parameter are usually expressed as a function of the integral 
breath β which represent the width of a rectangle with the same height and area as the 
diffraction peak.  
 
Gaussian distribution: 
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Lorentzian distribution: 
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The particle size is generally associated with the line broadening proportional to 
θcos

1 . 

This means that for Gaussian distribution it is related to the parameter P - equation (8) and 
for Lorentzian to the parameter X – equation (9). 
 
According to the Scherrer formula for VD - so called volume weighted crystalline size we 
have: 
 

( )θβλ cosKDV =  
 

K = Scherrer constant, somewhat arbitrary value that falls in the range 0.87-1.0. I usually 
assume K = 1. 
λ = wavelength of the radiation 
β = integral breadth of a reflection (in radians) located at 2θ. 
 
 



For Gaussian distribution we have from the equations (8): 
 

( )PKDV
32180 πλ=   if P expressed in degs2 (Fullprof) or  

( )PKDV
3218000 πλ=    if P expressed in (0.01degs)2 (GSAS, Jana) 

 
For Lorentzian distribution we have from the equation (9): 
 

( )XKDV
2360 πλ=      if X expressed in degs (Fullprof) or  
( )XKDV

236000 πλ=    if X expressed in 0.01degs (GSAS, Jana) 

 
The strain parameter is generally associated with the line broadening proportional to θtan  
 

θεβ tan4 str=  
 
Where β  are expressed in radians.  For Gaussian distribution we have from the equations 
(8): 
 

7202 3
, UGstr πε =    if U expressed in degs2 (Fullprof) or 

720002 3
, UGstr πε =   if U expressed in (0.01degs)2 (GSAS, Jana) 

 
For Lorentzian distribution we have from the equations (9): 
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1440002
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However such an interpretation has real meaning only if the integral breadth is 
corrected for instrumental broadening. 
 
 
An alternative more elegant way is a fundamental approach. In Jana2006 we have used the 
approach developed by A.Coelho and R.W.Cheary: 
 
J. Appl. Cryst. (1992). 25, 109-121. 
J. Appl. Cryst. (1998). 31, 851-861. 
J. Appl. Cryst. (1998). 31, 862-868. 
 
Particle size: 
 
The instead of parameters X in the equation (9) the so called apparent crystallite size is 
used: 
 

( )XTapp πλ18000=   
 
in Jana2006 this parameter is expressed in nm and its relationship to DV is: 
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For Gaussian distribution we are using the reduced form of the equation (8): 
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where instead of the parameter P we also use the apparent crystallite size: 
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The strain parameters UFA and YFA (in Jana2006 called StrainG and StrainL) are just 
transformed to radians/100. 
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The factor 2ln8  just transforms Gb  to GH  according to the equation (2). 
 
Then the parameter Lstr ,ε and Gstr ,ε  are related to FAY  and FAU : 
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