Profile functions used in Jana2006

The profile functions are used to model a shape of diffraction peaks. It is a function of the
argument x =@ — 6y, the difference of the actual position from the expected position of the
diffraction h. There are three possibilities for the profile function in Jana2006.

Gaussian function: G(x)= a exp(— x* /207 ) (1)
the coefficients ag and bg can be expressed as a function of FWHM called Hg :
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similarly as for the Gaussian the coefficients a, and b, can be expressed as a function of
H L -
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a_ = L b, =H, (4)
Pseudo-Voigt function:  pV (x)=7L(x)+ (1—7)G(x) (5)

Both FWHM for Lorentzian and Gaussian part in the above formula are supposed to be
same calculated from the equation:
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The second parameter 7:
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Angular dependence of FWHM

The FWHM parameters are dependent on the scattering angle. The Gaussian Hg is
composed from five terms:

be =U tan® @ +V tan & +W + +(1-¢)T? (8)
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The first three terms account for basic broadening by slits, wave length dispersion and
influence of monochromator as described by Cagliotti, Pauletti & Ricci 1958



(Nucl.Instrum., 3, 223). The forth term is the Scherrer coefficient for Gaussian broadening.
It should be noted that only U and W or P and W or P and U can be refined together to

. The last

avoid singularity caused by the trigonometry relationship: tan? @ +1= 5
cos” @
term accounting for anisotropic strain will be discussed separately.

The Lorentzian b, is composed from five terms as well:
b, = (X + X, cosg, )/cos@+(Y +Y,cosg, )tand+<T,  (9)

The X terms accounts for Lorentzian Scherrer particle broadening. X and X, stands for

isotropic and anisotropic part, respectively. ¢y is the angle between the diffraction vector

and the broadening direction.
The Y terms describe strain broadening and the meaning of the constants is analogical to
those for particle broadening.
The last term stands for the Stephen's stain anisotropy and it could not be combined with

Ye.
Anisotropic peak broadening as introduced by P.W.Stephens

The phenomenological model is based on a general tensor expression in which the
anisotropic strain is described by a symmetrical 4th order tensor:
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The first term is just a general tensor expression where Landau summation convention is
used and which allows a simple derivation of symmetry restrictions similar to those for 4th
order ADP parameters. The second term has an explicit form as used by Stephens in which

summation is restrictedto H + K+ L =4,
Using the Bragg equation we can get finally for the contribution to FWHM :

T =[02(h,k,|)]md2tan9

The ratio in which is the broadening is included to Gaussian and to Lorenzian part is

L-¢)e.

Jana2000 uses the notation similar to that in GSAS:
Uu—-Gu,V—->GV,W—-GW,P — GP

X, Xy — LX,LXe, Y,Y, — LY, LYe

The Stephens' parameters are chosen in analogy of his paper - J.Appl.Cryst. (1999), 32,
281-2809.



Different R values used in Jana2006
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i runs over all points of the profile, y;(obs) and y;(calc) are observed and calculated
intensity, respectively.
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where the weights are calculated from standard uncertainties of profile intensities:
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where y/(obs)=y;(obs)—b;, and y!(calc)=y;(calc)—b; are intensities corrected for
background.

The conventional structural R values are calculated after le Bail separation. The R values
based on F and | are listed for both all and observed reflections. The R factor based on F



are R.(obs), R.w(obs),R.(all), R-w(all). Those based on intensities are R, (obs),
Ryw(obs), R, (all), Ryw(all).

Extraction of Fobs and o( Fobs) from powder profile

Powder diffraction the F,, (obs) values for calculation of Fourier maps, structural R values
and for MEM are to be derived from the observed and calculated powder profile and
F.q (calc) as follows from the temporary structural model. From all profile points to which
the reflection (h,k,l) contributes we can write:

L.A.R.P(hk 1) (h k,1)F2(obs)= ;’_j'((é’:li)).Li.A.Ri.a(h,k,|)Qi (h,k,1)F2 (calc)

L, contains the Lorentz, polarization and multiplicity factor of the reflection (h,k,1)
A is an absorption factor

R, is a roughness correction

P(h,k,1)is the preference orientation function

Q,(h,k,1) is the reflection profile function

This means that for all profile points to which the reflection (h,k,1) makes non-zero
contribution we have F.Z, ; (obs):

'(obs
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Then the final value FZ (obs) and o|F2 (obs)|can be calculated as an average and standard

error. However, as profile points do not have same experimental accuracy, two methods
how to suppress undesired fluctuations:

1. For calculation of averaged values only profile points to which the relevant reflection
(h,k,I)contributes significantly are used. As a criterion we are using values of the

profile function Q;(h,k,1) which must by at least 10% of its maximal value.

2. In the average procedure uses weights based on experimental standard uncertainties:
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The weights w, are derived from the estimated values of standard uncertainties of the
expression:
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Following the propagation rule we have:
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then for &*(Y) we have:
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Similar method is use for estimation of &[F2 (obs)]:

G[Fhil (Obs)] =1/— —Fa (ObS)

This method combines experimental standard uncertainties expressed by weights with a
profile fit. In the case that peaks are too sharp it could be preferable to concentrate only on
experimental uncertainties and calculate a[Fth, (obs)]by the error propagation formula:

) Zwi Fa (calc)
U[Fhkl (Obs)] = Z w

This equation follows from the expression for F2 (obs):

F.2 (obs)=- A |)Fhi|(CaIc)

and application the error propagation theorem under assumption that term in the
summation have zero correlations:
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Particle size and strain parameters as follows from Jana profile parameters

The particle size and strain parameter are usually expressed as a function of the integral
breath B which represent the width of a rectangle with the same height and area as the
diffraction peak.

Gaussian distribution:

G(x)= a exp(-x?/2b2)
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Lorentzian distribution:
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The particle size is generally associated with the line broadening proportional to prowt
cos

This means that for Gaussian distribution it is related to the parameter P - equation (8) and
for Lorentzian to the parameter X — equation (9).

According to the Scherrer formula for D, - so called volume weighted crystalline size we
have:

D, = K1/(fcos8)

K = Scherrer constant, somewhat arbitrary value that falls in the range 0.87-1.0. I usually
assume K =1.

A = wavelength of the radiation

B = integral breadth of a reflection (in radians) located at 26.



For Gaussian distribution we have from the equations (8):

D, =180 K/l/(«/erSP) if P expressed in degs? (Fullprof) or
D, =18000K4/(27°P ) if P expressed in (0.01degs)? (GSAS, Jana)

For Lorentzian distribution we have from the equation (9):

D, =360KA/(72X ) if X expressed in degs (Fullprof) or
D, =36000KA/ (ﬂZX ) if X expressed in 0.01degs (GSAS, Jana)

The strain parameter is generally associated with the line broadening proportional to tan &

pP=4e, tand

Where £ are expressed in radians. For Gaussian distribution we have from the equations

(8):

Eqr e =727°U /720 if U expressed in degs? (Fullprof) or
Eqre =" 27°U /72000 if U expressed in (0.01degs)? (GSAS, Jana)

For Lorentzian distribution we have from the equations (9):

L =7°Y/1440 if Y expressed in degs (Fullprof) or
Eqr=7Y /144000 if Y expressed in 0.01degs (GSAS, Jana)

&

However such an interpretation has real meaning only if the integral breadth is
corrected for instrumental broadening.

An alternative more elegant way is a fundamental approach. In Jana2006 we have used the
approach developed by A.Coelho and R.W.Cheary:

J. Appl. Cryst. (1992). 25, 109-121.

J. Appl. Cryst. (1998). 31, 851-861.

J. Appl. Cryst. (1998). 31, 862-868.

Particle size:

The instead of parameters X in the equation (9) the so called apparent crystallite size is
used:

T, =180002/(7X)

in Jana2006 this parameter is expressed in nm and its relationship to Dy is:



For Gaussian distribution we are using the reduced form of the equation (8):
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where instead of the parameter P we also use the apparent crystallite size:
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The strain parameters Ura and Yra (in Jana2006 called StrainG and StrainL) are just
transformed to radians/100.

Y., = 7Y /180
U, =7-/8In2U /180

The factor ~/8In2 just transforms b, to H according to the equation (2).

Then the parameter ¢, and ¢, o are related to Y., and U, :

Egr,. =Yg /800
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Esrc = MUFA/L]'OO



