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Abstract
Superspace symmetry has been for many years the standard approach for the analysis of
non-magnetic modulated crystals because of its robust and efficient treatment of the structural
constraints present in incommensurate phases. For incommensurate magnetic phases, this
generalized symmetry formalism can play a similar role. In this context we review from a
practical viewpoint the superspace formalism particularized to magnetic incommensurate
phases. We analyse in detail the relation between the description using superspace symmetry
and the representation method. Important general rules on the symmetry of magnetic
incommensurate modulations with a single propagation vector are derived. The power and
efficiency of the method is illustrated with various examples, including some multiferroic
materials. We show that the concept of superspace symmetry provides a simple, efficient and
systematic way to characterize the symmetry and rationalize the structural and physical
properties of incommensurate magnetic materials. This is especially relevant when the
properties of incommensurate multiferroics are investigated.

(Some figures may appear in colour only in the online journal)
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1. Introduction

The use of the superspace formalism for the description of
incommensurate modulated magnetic structures was already
proposed at the early stages of its development, more than
30 years ago [1]. However, although this theory has become
the standard approach for the analysis of incommensurate
and commensurate non-magnetic modulated crystals and
quasicrystals [2–4], it has remained essentially unexplored as
a practical approach to deal with magnetic incommensurate
structures, except for some testimonial works [5]. This
contrasts with the fact that incommensurate magnetic phases
are frequently found in magnetic systems, where the lattice
geometry and the competition between different types of
interactions often lead to complex phase diagrams that
include periodic and aperiodic (incommensurate) order [6,
7]. But recently the refinement program JANA2006 has
been extended to magnetic structures [8, 9], and this code
can now determine incommensurate magnetic structures
using refinement parameters and symmetry constraints
consistent with any magnetic superspace group. As a
result, incommensurate magnetic phases have started to be
investigated with the help of the superspace formalism as an
alternative to the usual representation method [10–12].

The slower adoption of the superspace formalism in the
case of magnetic incommensurate phases is related with the
widespread use of the representation analysis developed by
Bertaut [13, 14]. This method is based on the decomposition
of the magnetic configuration space into basis modes
transforming according to different physically irreducible
representations (irreps) of the space group of the paramagnetic
phase (henceforth, paramagnetic space group), and can be
used to describe magnetic modulations independently of their
propagation vector being commensurate or incommensurate.
The codes commonly employed for the refinement of
incommensurate magnetic structures, such as FullProf [15],
use this approach. However, this versatility has a cost. The
recent upsurge of research work on multiferroic materials,
where the spin–lattice coupling plays an essential role,
has clearly shown both the limits of the representation
method and the need for a comprehensive knowledge of how
symmetry constrains the different magnetic and structural
degrees of freedom and influences the physical properties
of an incommensurate magnetic phase. This information is
provided by the magnetic superspace formalism in a very
simple and efficient manner [16, 17]. For instance, the tensor
properties of a given incommensurate phase are constrained
by the magnetic point group of the magnetic superspace
group assigned to that phase. In contrast, in the case of the
representation method, the magnetic point group of the system
is generally neither known nor controlled, and may even be

inadvertently changed during the refinement, depending on
the restrictions imposed on the basis functions.

The assignment of a superspace group symmetry to an
incommensurate magnetic phase is therefore a fundamental
step to rationalize its physical properties. As it happens
for displacive modulations in non-magnetic incommensurate
structures, a combined use of representation analysis and
superspace formalism is highly recommendable [9]. The
description of an incommensurate magnetic structure in terms
of irrep modes is somewhat incomplete if the magnetic
superspace group associated with the corresponding spin
configuration is not explicitly given.

While for non-magnetic incommensurate structures the
relationship between irrep modes and superspace formalism
has been studied in detail [18–23], for magnetic structures
it has only been recently considered for some specific
materials [16, 17]. To our knowledge a general practical
framework for the combined use of the representation method
and the superspace formalism in magnetic incommensurate
phases has never been presented. The present paper aims
to fill this gap and draw attention to the latter formalism
by giving a comprehensive view on the application of the
superspace symmetry concepts to magnetic incommensurate
structures. After a brief review of the basic concepts of the
superspace formalism, we will discuss in some detail the
relationship between superspace symmetry and representation
analysis. The power and efficiency of adopting the superspace
description will then be illustrated through the analysis
of several examples. For the sake of simplicity, and also
because it is the most common case in modulated magnetic
structures, we will restrict the discussion to systems with
one-dimensional modulations, i.e. with a single propagation
vector, for which the superspace has (3+ 1) dimensions.

2. Superspace symmetry and magnetic modulations

2.1. Review of the basic concepts

A complete and detailed introduction to the concepts of
the superspace formalism can be found in [2–4]. Here, we
summarize the main results taking care that the arguments
and the expressions explicitly include the case of magnetic
structures.

A modulated magnetic structure with a single incommen-
surate propagation vector k is described within the superspace
formalism by a normal periodic structure (the so-called basic
structure, which has a symmetry given by a conventional
magnetic space group �b), plus a set of atomic modulation
functions defining the deviations from this basic periodicity
of each atom in each unit cell. The magnetic space group �b
will be, in general, a subgroup of a paramagnetic space group.
The modulation functions may concern the atomic positions,
the magnetic moments, the thermal displacement tensor, some
occupation probability or any other relevant local physical
magnitude. The value of a property Aµ of an atom µ in the
unit cell of the basic structure varies from one cell to another
according to a modulation function Aµ(x4) of period 1, such
that its value Alµ for the atom µ at the unit cell l, with basic
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position rlµ = l + rµ (l being a lattice translation of the basic
structure) is given by the value of the function Aµ(x4) at
x4 = k · rlµ:

Alµ = Aµ(x4 = k · rlµ). (1)

These atomic modulation functions can be expressed by a
Fourier series of the type

Aµ(x4) = Aµ,0

+

∑
n=1,...

[Aµ,ns sin(2πnx4)+ Aµ,nc cos(2πnx4)]. (2)

Thus, a basic conventional periodic structure, a modulation
wavevector k and a set of periodic atomic modulations Aµ(x4)

for each atom in the basic unit cell determine the aperiodic
values of any local atomic quantity and completely describe
the aperiodic crystal. Considering the definition of x4, such
a description does not apparently differ much from the
usual approach of using basis functions (waves) transforming
according to irreps of the paramagnetic space group [15].
However, fundamental differences appear when the symmetry
properties are defined.

By definition, any operation (R, θ |t) of the magnetic
space group �b of the basic structure (with R being a
point-group operation, θ being −1 or +1 depending on
whether the operation includes time reversal or not, and t a
translation in 3d real space) transforms the incommensurately
modulated structure into a distinguishable incommensurate
modulated structure, sharing the same basic structure and
having all its modulation functions changed by a common
translation of the internal coordinate x4, such that the new
modulation functions A′µ(x4) of the (R, θ |t)-transformed
structure satisfy

A′µ(x4) = Aµ(x4 + τ). (3)

The translation τ depends on each specific operation. This
implies that the original modulated structure can be recovered
by performing an additional translation τ along the so-called
internal coordinate, i.e. the phase of the modulation functions.
In this sense, one can speak of (R, θ |t, τ ) as a symmetry
operation of the system defined in a four-dimensional
mathematical space, where the fourth dimension corresponds
to the continuous argument of the periodic modulation
functions.

The addition of the global phase translation of the
modulation as a fourth dimension allowing an additional
type of transformation of the structure is enabled by the
fact that an arbitrary phase translation of the modulation
in an incommensurate phase (corresponding to the well-
known phason excitations characteristic of incommensurate
structures) keeps the energy invariant, in the same way
that arbitrary rotations, roto-inversions, translations and
time reversal do. A symmetry group of a system is, in
general, a subgroup of the group of transformations that
keep the energy of the system invariant, and it is constituted
by the operations of this group that have the additional
property of leaving the system indistinguishable. Thus, space
groups of commensurate structures are subgroups of the
whole group of rotations, roto-inversions and translations.

Similarly, in the case of an incommensurate structure, the
symmetry group (the so-called superspace group) is defined
as a subgroup of the full group of all transformations that
keep the energy of the system invariant, including global
arbitrary phase shifts of the incommensurate modulation.
The superspace group symmetry is then formed by the
subset of (R, θ |t, τ ) operations that, in addition, keep the
system indistinguishable after the transformation. The energy
invariance for global phase translations therefore ensures
the robustness of this generalized symmetry concept for
characterizing the symmetry restrictions associated with an
incommensurate phase [24]. It implies that the generalized
symmetry, so defined, is a property that can be assigned to a
thermodynamic phase and the breaking of this symmetry can
only happen through a phase transition.

If (R, θ |t, τ ) belongs to the (3+1)-dim superspace group
of an incommensurate magnetic phase, the action of R on its
propagation vector k necessarily transforms this vector into a
vector equivalent to either k or −k. This means

k · R = RIk+HR, (4)

where RI is either +1 or −1 and HR is a reciprocal lattice
vector of the basic structure that depends on the operation
R. The vectors HR can only be different from zero if the
propagation vector k includes a commensurate component [2].

The restrictions on the form of the atomic modulation
functions that result from a superspace group operation
(R, θ |t, τ ) can be derived from the above definitions as
follows. If in the basic structure an atom ν is related to an
atom µ by the operation (R, θ |t) such that (R|t)rν = rµ + l,
then their atomic modulation functions are not independent
and are related by

Aµ(RIx4 + τo +HR · rν) = Transf(R, θ)Aν(x4), (5)

where τo = τ+k·t and Transf(R, θ) is the operator associated
with the transformation of the local quantity Aµ under the
action of the point-group operation (R, θ). Thus, equation
equation (5) introduces a relationship between the modulation
functions of the magnetic moments of the two atoms:

Mµ(RIx4 + τo +HR · rν) = θ det(R)R · Mν(x4), (6)

while the atomic modulation functions uµ(x4), uν(x4)

defining the atomic displacements in each basic cell with
respect to the basic positions rlµ and rlν are related as

uµ(RIx4 + τo +HR · rν) = R · uν(x4). (7)

These relations imply that only the modulation functions of
the set of atoms in the asymmetric unit of the basic structure
are necessary in order to define the whole structure. Notice
that equations (6) and (7) force specific restrictions on the
possible forms of the modulation functions of atoms that
occupy positions in the basic structure that are left invariant
(µ = ν) by some symmetry operations of �b.

According to the above definitions, all translations of the
basic lattice combined with conveniently chosen phase shifts,
namely the operations (1,+1|t,−k · t) (here, 1 represents
the identity matrix), belong to the superspace group of the
structure and form its (3 + 1)-dim lattice. If k = (kx, ky, kz)
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is expressed in the basis reciprocal to the chosen direct basis
of space group �b, then the four elementary translations
(1,+1|1 0 0,−kx), (1,+1|010,−ky), (1,+1|001,−kz) and
(1,+1|000, 1) generate that lattice and define a unit cell in
the (3 + 1)-dim superspace. In the basis formed by these
superspace unit cell translations, the symmetry operation
(R, θ |t, τ ) can be expressed in the standard form of a space
group operation in a 4-dim space, (Rs, θ |ts), where ts is a
four-dimensional translation and Rs a 4 × 4 integer matrix
defining the transformation of a generic point (x1, x2, x3, x4):

RS =


R11 R12 R13 0

R21 R22 R23 0

R31 R32 R33 0

HR1 HR2 HR3 RI

 (8)

Here, the Rij are the matrix coefficients of the rotational
3-dim operation R of the space group operation (R, θ |t)
belonging to �b (expressed in the basis of the basic unit
cell), (HR1,HR2,HR3) the components (in the corresponding
reciprocal basis) of the vector HR defined in (4), and RI is +1
or −1, according to equation (4). The superspace translation
ts in the 4-dim basis is given by (t1, t2, t3, τ0), where ti are the
three components of t in the basis of the basic unit cell and
τo = τ + k · t, as in equation (5). The value of τ0 does not
depend on the specific value of the irrational component(s) of
the incommensurate wavevector k, and the group composition
law is a trivial extension of the usual law for conventional
(3-dim) space groups:

(Rs1, θ1|ts1)(Rs2, θ2|ts2) = (Rs1Rs2, θ1θ2|Rs1 · ts2 + ts1). (9)

Superspace groups can therefore be defined with symmetry
cards entirely analogous to those of normal space groups (see
the example in section 2.2).

A superspace group operation (Rs, θ |ts) can be sym-
bolically expressed in a generalized Seitz-type simpler form
{R, θ |ts}, with ts = (t1, t2, t3, τ0), only indicating explicitly
the operation R (since the 4× 4 matrix Rs is fully determined
by R (see equation (8))) while keeping the translational part
expressed in the superspace unit cell basis. We will use the
keys {} to distinguish this form of expressing the superspace
symmetry operations, which obviates the ever-present −k · t
internal translation along x4. In the following, we will use
when appropriate one or the other notation; their equivalence,
(R, θ |t1t2t3, τ ) = {R, θ |t1t2t3τo} with τo = τ +k · t, should be
kept in mind. For instance, (R, θ |0 0 1

2 ,
1
2 −

1
2γ ) is the same

as {R, θ |0 0 1
2

1
2 } (with k = γ c∗). In one case we are using

the 3D translational lattice vectors of the basic structure, while
in the other case we use the usual oblique lattice basis vectors
of the superspace lattice.

Summarizing, an incommensurate magnetic structure can
be fully described by specifying: (i) its magnetic superspace
group (as in normal crystallography, this symmetry group can
be unambiguously given by listing its symmetry operations);
(ii) its periodic basic structure (usually non-magnetic), with
its symmetry given by a conventional (magnetic) space group
forced by the superspace group and (iii) a set of periodic
atomic modulation functions (period 1) that define, according

Table 1. Representative operations of the centrosymmetric
superspace group P1̄1′(αβγ )0s described by using generalized
Seitz-type symbols (left column) and symmetry cards as used in the
program JANA2006 [8].

{1|0000} x1 x2 x3 x4 +m
{1̄|0000} −x1 −x2 −x3 −x4 +m
{1′|000 1

2 } x1 x2 x3 x4 +
1
2 −m

{1̄′|000 1
2 } −x1 −x2 −x3 −x4 +

1
2 −m

to equation (1), the magnetic modulations for the atoms
of the asymmetric unit of the basic structure. If, besides
the magnetic modulations, there exist additional structural
modulations (such as, for instance, lattice distortions induced
by spin–lattice coupling), these will be described by their
corresponding modulation functions defined for the atoms
of the same asymmetric unit, and constrained by the same
superspace group. The magnetic point group of the system
is given by the set of all point-group operations present in the
operations of this superspace group.

2.2. The simplest example: a centrosymmetric
incommensurate modulation

Let us consider the simplest illustrative example: a param-
agnetic phase with space group P1̄ (magnetic group P1̄1′)
develops a magnetic modulation with an incommensurate
propagation vector (α, β, γ ) directed along an arbitrary
direction such that its superspace symmetry is given
(besides the 4-dim lattice translations) by the representative
operations: {1|0000}, {1̄|0000}, {1′|000 1

2 } and {1̄′|000 1
2 }

4.
This superspace group can be denoted as P1̄1′(αβγ )0s,
using a natural extension of the well-established labelling
rules for non-magnetic superspace groups [2, 25] and, as
shown in section 3.3, it is the symmetry of any magnetic
modulation originated by a single irreducible representation.
Table 1 lists the symmetry operations of this group in the
form of generalized symmetry cards, as used for instance in
JANA2006 [8]; these cards use a self-explanatory notation,
indicating unambiguously the linear transformations in the
four-dimensional unit cell basis.

Let us now see how these symmetry operations constrain
the resulting magnetic and structural modulations. According
to equations (6) and (7), the symmetry operation {1′|000 1

2 }

implies that the spin modulations Mµ(x4) of all magnetic
atoms must necessarily be odd functions for a x4 translation
1/2. Therefore, their expansion is restricted to odd Fourier
terms. Similarly, any induced structural modulations uµ(x4)

that may occur as secondary effects are necessarily even
for the same x4 translation and are therefore restricted to
even Fourier terms. The inversion operation further restricts
the modulations of atoms lying at special positions in the
paramagnetic structure. According to (5) and (6), the Fourier
series (see equation (2)) describing the magnetic modulations

4 Henceforth, when indicating concrete operations and not generic
operations, we drop the index θ and indicate the inclusion of time reversal by
adopting the usual convention of adding a prime to the point-group operation
symbol (1′,m′x, 2′y, . . .).
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Figure 1. Examples of magnetic structures keeping (a) and breaking (b) centrosymmetry. In both cases, it is a triclinic P1̄ structure with
different magnetic atoms at sites (000) and (1/2 1/2 1/2) and propagation vector (0 0 ∼0.32). They show that collinearity of all spin waves
is not necessary for keeping the inversion centre. In case (a), the spin modulations in both independent atoms are in phase and the superspace
group maintains the space inversion operation. In case (b), despite being collinear, the magnetic modulations of both atoms are phase-shifted
and the inversion symmetry is broken. The labels of the superspace symmetries corresponding to each case are indicated below.

for atomic sites with inversion symmetry (Wyckoff positions
1a, 1b,. . ., 1h) can only have cosine terms, while the Fourier
series of the induced structural modulations are restricted to
sine terms. In addition, the modulation functions for an atom
in a general position (x, y, z), say atom 1, determines the
modulation of its symmetry related (-x,−y,−z) pair, say atom
2, according to the relations

M2(−x4) = M1(x4) (10)

u2(−x4) = −u1(x4). (11)

These equations imply that the corresponding Fourier
components must fulfil the conditions M2,ns = −M1,ns,
M2,nc = M1,nc (n-odd) and u2,ns = u1,ns, u2,cs = −u1,nc

(n-even), with the sub-indexes s and c indicating the sine and
cosine Fourier amplitudes, respectively (see equation (2)).

As the phase of the total modulation in an incommen-
surate phase is arbitrary, the above discussion restricting the
modulations of atoms at centrosymmetric sites to cosine or
sine terms can be misleading. In fact, the inversion operation
for an arbitrary choice of this global phase of the modulation
would be of the form {1̄|000τ } with τ 6= 0, but we have
made a specific choice of this phase, equivalent to a choice
of the origin in internal space, such that τ = 0. Therefore,
the important property, independent of the choice of origin, is
that the modulation functions for all atoms at special positions
must necessarily be in phase (see figure 1) and that the
possible induced structural modulations (which include only
even Fourier terms) are necessarily shifted by π

2 or −π2 with
respect to the magnetic modulation.

The breaking of space inversion symmetry by an in-
commensurate modulation is sometimes difficult to visualize
(see figure 1). If, for example, the system has several
independent magnetic atomic sites in the paramagnetic phase,
the restrictions that keep the inversion symmetry do not
necessarily imply a collinear magnetic ordering. But the
superspace formalism describes in a simple and general form
both the structural and magnetic constraints associated with
the presence of an inversion centre (see section 4 for more on
this example).

3. Magnetic superspace groups and irreducible
representations

In accordance with Landau theory, magnetic ordering
is a symmetry-breaking process that can be described
by an appropriate order parameter. In many cases, the
transformation properties of this order parameter correspond
to those of a single irreducible representation (irrep) of the
magnetic grey space group associated with the paramagnetic
phase. The frequent limitation of the magnetic modulation to
a single propagation vector is often a consequence of this
restriction to a unique irreducible order parameter, that is,
an order parameter that is transformed according to a single
irrep. In more general cases, magnetic configurations with
a single propagation vector can be decomposed into several
magnetic modes transforming according to different irreps
sharing the same propagation vector. This is the basis for the
representation analysis method developed by Bertaut [13, 14],
where the possible magnetic orderings are parametrized by
complete sets of basis modes transforming according to the
irreps of the paramagnetic space group associated with the
observed propagation vector. The magnetic configuration is
described with the help of basis modes corresponding to a
single irrep or, if necessary, to a set of irreps as small as
possible. It should be stressed that the irreps in this method are
ordinary representations (but odd for time reversal) and these
irreps define not only the transformation properties of the
magnetic configuration for the operations keeping invariant
the propagation vector k, but also for those transforming k
into −k. The introduction of corepresentations is therefore
not necessary for dealing with these latter transformations (see
also section 4.1.2).

It is important to establish in detail the relationship
between the symmetry constraints imposed by the assignment
of a certain irrep to the magnetic order parameter and those
resulting from ascribing a magnetic superspace group to the
magnetic phase. As we will see below, these two sets of
constraints are closely related, but superspace symmetry is, in
general, more restrictive and more comprehensive, as it affects
all the degrees of freedom of the system.

5
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3.1. The parent symmetry for a magnetic modulated phase

The parent symmetry to be considered for a magnetic phase is
the magnetic grey space group of the paramagnetic phase. For
each space group operation (R|t), we have to consider two
distinct operations (R,−1|t) and (R,+1|t), distinguishing
if the operation (R|t) is complemented by a time reversal
transformation or not. The symmetry operations of the
paramagnetic crystal are thus trivially doubled, implying that
the magnetic space group �p can be expressed as the coset
expansion:

�p = Gp + (1′|0 0 0)Gp, (12)

where Gp is the ordinary space group formed by operations
of type (R,+1|t). The coset (1′|0 0 0)Gp includes an equal
number of operations (R,−1|t). Notice that the antiunitary
properties of the operations that integrate this second
coset [26] are irrelevant when working with real quantities.
Therefore, we do not need to use the corepresentations of
the grey group �p in order to describe the transformation
properties of a given arrangement of magnetic moments or
atomic displacements. The irreps of �p are trivially related
to those of Gp: for each irrep of Gp two irreps of �p
exist, one associating the identity matrix 1 to time reversal
and the other the matrix −1. In the following, we shall
call them non-magnetic and magnetic irreps, with explicit
generic labels T and mT , following the notation employed
in ISODISTORT [27]. As time reversal changes the sign of
all magnetic moments, magnetic modes obviously transform
according to magnetic irreps, while phonon modes, for
instance, transform according to non-magnetic irreps. The
odd character for time reversal of the irreps of the magnetic
modes is usually not explicitly indicated in conventional
representation analyses of magnetic structures, but it is very
important to make clear this distinction in a general context
where lattice degrees of freedom are also classified according
to irreps.

3.2. The order parameter and the general invariance
equation

The components of the irreducible order parameter can be
considered as amplitudes of a set of static spin waves with
propagation vectors {k1, . . . , kn} (the so-called wavevector
star of the irrep) that transform into each other under the action
of the symmetry group of the paramagnetic phase. If N is the
number of independent spin waves for the propagation vector
k1 (i.e. the dimension of the so-called small representation),
then there exist an equal number for all other wavevectors
in the irrep star, and the dimension of the irrep is n ×
N. In general, an incommensurate magnetic ordering with
a single propagation vector and transforming according to
a single irrep mT can give rise to different superspace
group symmetries depending on the direction taken by the
irrep order parameter in this n × N space. Notice that the
term irreducible representation (irrep) is used here in the
sense of physically irreducible representation, because we are
concerned with the transformation properties of real physical

magnitudes, such as magnetic moments or lattice distortions.
Therefore, in some cases, these irreps are actually the direct
sum of two complex conjugate irreducible representations.
This implies that the irrep star is always formed by pairs of
wavevectors ki and −ki.

Independently of the number of arms of the irrep star,
the possible directions for the order parameter that yield
a magnetic ordering with a single propagation vector (and
therefore a symmetry described by a (3 + 1)-dim superspace
group) are necessarily limited to those where only a single
wavevector k (and its opposite, −k) of the irrep star is
involved. We can then constrain the order parameter to a
2N-dim subspace within the irrep space, and express the
magnetic moment M(µ, l) of any atom (µ, l) in the structure
as

M(µ, l) =
∑

i=1,...,N

Si(k)mi(µ)e−i2πk·(l+rµ)

+ Si(−k)m∗i (µ)e
i2πk·(l+rµ) (13)

Here, Si(k) and Si(−k) are global complex components of
the order parameter (with Si(−k) = S∗i (k), i = 1, . . . ,N),
µ labels the magnetic atoms in the reference unit cell and
mi(µ) denotes a normalized polarization vector that defines
the internal structure (i.e. the correlation between the atomic
magnetic moments in a unit cell) of each of the N spin
waves. Notice that the choice for the sign of the exponents
in equation (13) complies with the convention of a positive
phase shift ei2πk·t for the action of a translation (1|t) on the
spin wave amplitudes Si(k) (see also equation (15) below).
Notice also that we are defining a single global magnetic
mode {mi(µ)} for each component of the order parameter. The
magnetic moments mi(µ) of this mode will have correlations
among symmetry related atoms according to the requirements
of the transformation properties of the relevant irrep, along
with specific physical correlations, as it is in general given
by some system-dependent linear combination of basis modes
with the same transformation properties.

By definition, an operation (R, θ |t) of the paramagnetic
symmetry group, such that k · R is equivalent either to k
or to −k, transforms any magnetic ordered configuration
described by equation (13) with a set of amplitudes
{Si(k), Si(−k)} into a new one, described by the same
equation and polarization vectors mi(µ) but with new
transformed amplitudes {S′i(k), S′i(−k)} given by

S′1(k)

· · ·

S′N(k)

S′1(−k)

· · ·

S′N(−k)


= mT(R, θ |t)



S1(k)

· · ·

SN(k)

S1(−k)

· · ·

SN(−k)


. (14)

Here, mT(R, θ |t) denotes a 2N× 2N matrix that describes the
operation (R, θ |t)within the {k,−k} subspace of the irrep mT .
For instance, in the simple case of a lattice translation (1|t),

6



J. Phys.: Condens. Matter 24 (2012) 163201 Topical Review

the matrix mT will be of the form

mT(1|t) =

(
1 · ei2πk·t 0

0 1 · e−i2πk·t

)
(15)

with 1 and 0 representing the N-dimensional identity and
null matrices, respectively. According to the definition
of superspace symmetry introduced in section 2 (see
equation (5)), only the operations that keep the order
parameter within this limited subspace of two opposite vectors
(k and −k) may be part of the superspace group. They form,
in general, a subgroup of the paramagnetic grey space group
that we shall call the extended little group of k and denoted by
�p,k,−k. If the paramagnetic grey space group is non-polar,
the extended little group �p,k,−k can always be decomposed
into two cosets:

�p,k,−k = �p,k + g−k�p,k, (16)

with �p,k being the so-called little group that includes all
operations keeping k invariant (up to a reciprocal lattice
translation), while the coset g−k�p,k includes an equal
number of operations transforming k into −k. If the grey
group is a polar group, the second coset may not exist, in
which case the extended little group coincides with the little
group �p,k.

A phase shift α of the spin wave (see section 2) simply
adds a phase factor to the amplitudes of the order parameter,
transforming {Si(k), Si(−k)} into {eiαSi(k), e−iαSi(−k)}.
Therefore, a superspace operation (R, θ |t, τ ) exists for a spin
configuration {Si(k), Si(−k)} described by equation (13), if
there is a real value τ such that(

S(k)

S(−k)

)
=

(
1 · ei2πτ 0

0 1 · e−i2πτ

)
·mT(R, θ |t)·

(
S(k)

S(−k)

)
.

(17)

Here, S(k) and S(−k) represent the ordered set of complex
amplitudes {S1(k), . . . , SN(k)} and their complex conjugate
{S1(−k), . . . , SN(−k)}. Equation (17) expresses the fact that
the transformation of the spin configuration by the operation
(R, θ |t) can be compensated by a phase shift τ such that the
spin configuration is kept invariant.

The invariance equation (17) can be used to derive
all possible different superspace symmetries resulting from
the condensation of all possible types of single-k magnetic
orderings described by a single magnetic irrep. For the case of
non-magnetic distortions this problem has been systematically
analysed [18–21] and the set of all possible (3 + 1)-dim
superspace groups resulting from a single active irrep were
calculated and listed in [21]. These superspace groups are
obtained as isotropy subgroups of the continuous symmetry
group associated with the parent structure by adding to the
conventional space group operations the continuous set of
global phase shifts of the modulation. A complete list of these
non-magnetic isotropy superspace groups can also be found
on the ISOTROPY webpage [28]. We will see in section 3.4
how the possible (3 + 1)-dim magnetic superspace groups

resulting from a magnetic ordering with symmetry properties
given by a single irrep can be easily obtained from these lists
of non-magnetic superspace groups.

3.3. Superspace symmetry and irreducible representations

For a magnetic irrep mT , and for an ordered basis
of the irrep subspace spanned by the vectors k and
−k, such that its amplitudes are ordered in the form
{S1(k), . . . , SN(k), S1(−k), . . . , SN(−k)} (hereafter referred
to as a conjugate ordered basis), the matrix mT(R, θ |t)
associated in equation (17) to an operation (R, θ |t) belonging
to �p,k can be expressed as(

θDT(R)ei2πk·t 0

0 θD∗T(R)exp−i2πk·t

)
(18)

where DT(R) denotes a N × N matrix associated with
R and 0 is the null N × N matrix. The operation R
belongs to the so-called little co-group, a point group
formed by all point-group operations present in the elements
of the little group �p,k. The matrices DT(R) form, in
general, a projective irreducible representation of the little
co-group [29], which fully determines both irreps T and mT .
The N × N matrices θDT(R)ei2πk·t form an irrep of the little
group �p,k (small irrep), which is sufficient to generate the
irrep mT of the extended little group �p,k,−k. Except for
incommensurate wavevectors at the border of the Brillouin
zone in non-symmorphic space groups, the representation
DT(R) is an ordinary irreducible representation of the little
co-group [29]. The magnetic character of the irrep mT is taken
into account by the factor θ multiplying the matrix DT(R) in
(18), so that the matrices of the operations that include time
reversal are just the opposite of the corresponding operation
without time reversal. The first diagonal matrix block in (18)
acts on the amplitudes {Si(k)}, while the second matrix block
acts on their complex conjugates {Si(−k)}. The two blocks
are, by definition, related by complex conjugation.

In the case of the operations (R, θ |t) that belong to the
coset g−k�p,k, and for a conjugate ordered basis, as defined
above, the irrep matrices mT(R, θ |t) have the form(

0 A

A∗ 0

)
(19)

with A being a N × N matrix dependent on the particular
operation. It is sufficient to know this matrix for the chosen
coset representative g−k to derive the matrices for the rest of
the elements of the coset, by multiplying with the matrices of
type (18) corresponding to the elements of �p,k.

For multidimensional small irreps (N > 1), the solution of
(17) depends in general on the specific direction taken by the
N-dimensional vector {S1(k), . . . , SN(k)}. Therefore, several
different superspace symmetry groups are, in principle,
possible for the same irrep. Each complex component of the
vector {S1(k), . . . , SN(k)} has its own phase, while there is
only a single global shift τ in (17) to play with. In general,
not all operations of the extended little group �p,k,−k are
maintained in the superspace group and each case has to be
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considered separately. Therefore, the assignment of a given
irrep is clearly insufficient to specify the symmetry of the
incommensurate phase and the limitations of a representation
analysis without additional symmetry considerations become
evident.

On the other hand, for irreps with one-dimensional
small irreps (N = 1), there is a one-to-one relationship
between a given irrep of the paramagnetic space group and
a superspace group. For N = 1, the matrices (18) and (19) are
two-dimensional and the spin wave amplitudes reduce to two
complex conjugated components {S(k), S(−k)}. In this case
the values of DT(R) in (18) are either +1 or −1 (for polar
axial groups they can also be complex factors, but similar
conclusions are obtained with phase shifts of type 1/3, 1/4
or 1/6, instead of 1/2), and therefore (17) is fulfilled for all
operations (R, θ |t) of �p,k, with a phase shift τ = −k · t if
θ ·DT(R) = +1 or τ = −k ·t+1/2 if θ ·DT(R) = −1. Hence,
considering that τ0 = τ + k · t, all the operations (R, θ |t) of
�p,k will become part of the superspace group of the system,
either as operations {R, θ |t 0} or {R, θ |t 1

2 }. Similarly, the
operations that transform k into −k (the coset g−k�p,k) will
also satisfy equation (17). This can be shown by considering
the coset representative g−k = (R−k,+1|t). If the small irrep
is one-dimensional, the form of A in equation (19) can only be
either+ei2πk·t or−ei2πk·t. It is then obvious that equation (17)
is satisfied either with τ = −k · t+ 2φ or τ = −k · t+ 2φ+ 1

2 ,
with φ being the phase of the complex amplitude S(k). Hence,
either {R−k,+1|t 2φ} or {R−k,+1|t 1

2 + 2φ} is a superspace
group symmetry operation of the system (the shift along the
internal space of the operation depends on the choice of
origin along the internal space and can be made zero). The
group structure and decomposition (16) then guarantees that
all elements of g−k�p,k will be maintained as elements of the
superspace group.

Summarizing, single-k incommensurate magnetic order-
ings according to one single irrep with a one-dimensional
small irrep always maintain in its superspace symmetry all
operations of the extended little group �p,k,−k. A translation
(0001/2) along the internal space is added for operations
whose point-group part has character -1 in the small irrep,
and no internal translation is added for those with character
+1. The internal translations to be added to the operations of
the coset g−k�p,k are directly derived considering the internal
product of the group, and the fact that no internal translation
is necessary for the coset representative g−k. This result
is very important when considering possible multiferroic
properties. It implies that such type of incommensurate
magnetic orderings will never break the magnetic point group
associated with the extended little group of k, �p,k,−k. If
the paramagnetic space group contains space inversion, this
symmetry operation will necessarily be maintained. More
generally, if the paramagnetic phase is non-polar, one can
generally say that a magnetic ordering according to an
irrep with a 1-dim small representation can never break the
symmetry into a polar one, and therefore can never induce
ferroelectricity.

3.4. Time reversal plus phase shift of the modulation as
symmetry operation

Let us consider more closely the consequences of the
presence of time reversal as a symmetry operation of the
paramagnetic group. As any irrep corresponding to a magnetic
order parameter associates the inversion matrix −1 to the
time reversal operation (1′|0 0 0), it is obvious from (17)
that the operation (1′|000, 1

2 ) will necessarily belong to the
superspace group. In fact, this is a general property of
any single-k incommensurate magnetic modulation, as it is
the consequence of the harmonic character of any primary
magnetic arrangement. It is clear that, for a harmonic wave,
a phase shift of π changes the sign of all local magnetic
moments. Therefore, the combined action of this phase shift
with time reversal necessarily keeps the system invariant.

This simple general symmetry property has important
consequences. It implies that any possible superspace group
�s describing the symmetry of a single k magnetic
incommensurate modulation can be expressed as

�s
= Gs

+ (1′|000, 1
2 )G

s, (20)

where Gs is a superspace group formed by all the operations
(R,+1|t, τ ) that satisfy the invariance equation (17).
Therefore,Gs is necessarily one of the superspace groups
calculated in [21] and listed in [28], and all possible magnetic
superspace groups �s can be trivially derived from these
non-magnetic counterparts through equation (20).

A second important consequence has already been
mentioned in section 2.2. According to equations (5) and (6),
the operation (1′|000, 1

2 ) implies that the spin modulations
in single-k incommensurate magnetic phases are constrained
to odd order Fourier terms, while structural modulations
are limited to terms of even order. This means that, if
the magnetic modulation becomes anharmonic within the
same phase, only odd magnetic harmonics are allowed
(otherwise the symmetry would be further broken), while
the coupling with the lattice can only produce structural
modulations with even terms, i.e. with 2k as the primary
modulation wavevector. This property is known to happen
in many magnetic incommensurate phases (see the example
of chromium below), but its origin and validity can only be
fully grasped when perceived as a result of a fundamental
superspace symmetry operation.

The symmetry operation (1′|000, 1
2 ) also implies that the

magnetic point group of the phase includes time reversal.
Therefore, single-k incommensurate phases cannot be neither
ferromagnetic nor ferrotoroidic, i.e. no magnetization or
ferrotoroidal moment can appear as an induced secondary
weak effect. This result, which can be considered part of the
above-mentioned restriction of the magnetic configuration to
odd harmonics, illustrates a fundamental advantage of using
superspace symmetry concepts, namely the introduction of all
the constraints for any degree of freedom of the system, apart
from the primary magnetic modulation.

There has been in the previous literature on magnetic
superspace groups [1, 5, 10] some confusion about the
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significance of the operation (1′|000, 1
2 ). In many systems

the observed magnetic modulation is often limited to a single
harmonic, and its coupling with the lattice is negligible.
In such a case, one can reduce the description of the
magnetic arrangement to a harmonic magnetic spin wave,
which trivially complies with the constraints imposed by
the operation (1′|000, 1

2 ). Therefore, when the model is a
priori limited to the first harmonic, one can be tempted
to consider that the transformation (1′|000, 0) is equivalent
to the transformation (1|000, 1

2 ). Under this viewpoint, the
superspace groups Pn′21m′(0β0) and Pn21m(0β0)s0s were
considered in [5] as equally valid to describe the symmetry
of a particular incommensurate magnetic phase with a
sinusoidal modulation, because operations such as (m′z|000, 0)
and (mz|000, 1

2 ) were considered indistinguishable. However,
these two symmetries are not equivalent when taken as
comprehensive symmetry elements of the system, as they
imply quite different constraints upon other degrees of
freedom. For instance, crystal tensor properties related to
magnetism would be quite different. In the first case, with
the magnetic point group m′2m′, a ferromagnetic component
along y would be allowed, while it would be forbidden for
the second symmetry (with the point group m2m). The correct
approach is therefore to consider the two operations as distinct
members of the superspace group of the system. The correct
superspace group for the system discussed in [5] is therefore
Pn21m1′(0β0)s0ss which, in terms of a coset expansion, can
be expressed as

Pn21m1′(0, β, 0)s0ss = Pn21m(0, β, 0)s0s

+ (1′|000, 1
2 )Pn21m(0, β, 0)s0s, (21)

in agreement with the general expression (20). The magnetic
point group of the system is therefore m2m1′, i.e. a symmetry
that forbids ferromagnetism.

4. Incommensurate magnetic structures with one
irreducible order parameter

The identification of the magnetic superspace group of a given
incommensurate modulation is an efficient and compact way
to indicate all the symmetry-forced constraints on the degrees
of freedom and on the physical properties of the system.
As seen above, the possible crystal tensor properties can be
immediately derived from the point-group symmetry of the
superspace group. But, in addition, superspace symmetry also
imposes precise restrictions upon the magnetic and structural
distortions that are allowed in that phase. This very important
advantage of the superspace formalism will be analysed in
some detail in this section, with the help of several illustrative
examples of magnetic modulations driven by an irreducible
order parameter.

It has been argued that the assignment of an irrep to
the magnetic distortion is more restrictive or informative
than the assumption of a specific magnetic symmetry [30].
This is certainly not true for incommensurate structures if
superspace symmetry is used. As will be shown below, even
in the simplest case of a one-dimensional small irrep, the

superspace symmetry introduces either stricter or equivalent
restrictions, and in the case of multidimensional small irreps,
the assignment of a superspace group implies the choice of
a particular subspace within the space of magnetic basis irrep
modes, something that is beyond the method of representation
analysis as is usually applied.

4.1. The case of one-dimensional small irreps

4.1.1. The transition sequence in FeVO4. Let us
consider again the example given in section 2.2, where
the paramagnetic phase has the symmetry P1̄1′ and the
little group �p,k of the propagation vector (α, β, γ ) is
limited to P11′. In this case, only a single one-dimensional
magnetic small irrep exists, with character +1 and −1 for the
identity and time reversal, respectively. Therefore, according
to the general rules previously discussed, the magnetic
ordering originated by a single irrep mode necessarily
keeps inversion symmetry {1̄|0000} and the time reversal
operation {1′|000 1

2 }. This corresponds to the superspace
symmetry group P1̄1′(αβγ )0s, which has been described
in detail in section 2.2, including the resulting symmetry
restrictions on the magnetic and structural modulations. It
is illustrative to compare the superspace description for this
simple case with that derived from a representation analysis
through computer tools such as FullProf (BasiReps) [15], or
similar programs [31, 32]. In contrast with the superspace
symmetry constraints, these codes introduce no conditions
on the possible magnetic sinusoidal modulations of atoms at
special positions, and allow independent modulations (basis
functions) for the two atoms of any pair related by inversion.
This is due to the fact that the basis of modes provided
by these programs are only symmetry adapted to the little
group of k, �p,k and not to the operations that interchange
k and −k, which in this case are the only ones that restrict
the form of an irrep mode. Therefore, if the user does not
introduce additional restrictions, the basis functions provided
by the usual programs describe an arbitrary spin harmonic
modulation and the inversion symmetry is in general broken.
These general unrestricted spin modulations involve at least
two irrep modes with the same irrep (there is only one
possible irrep!) with some relative phase shift, which breaks
the symmetry associated with a single irrep mode.

This simple case is apparently realized in the compound
FeVO4, [33]. This material has a paramagnetic phase with
space group P1̄ and exhibits at low temperatures two
incommensurate magnetic phases with a propagation vector
along an arbitrary direction. The first phase is non-polar, while
the second one exhibits a spontaneous electric polarization.
These transitions seem therefore to correspond to the phase
sequence

P1̄1′→ P1̄1′(α, β, γ )0s→ P11′(α, β, γ )0s

where inversion is lost and ferroelectricity arises only at the
second transition, triggered by the condensation of a second
magnetic order parameter of the same symmetry. In [33],
the intermediate phase was reported as non-centrosymmetric
(despite the absence of a spontaneous polarization), but the
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Table 2. Irreps of the little co-group m2m1′ of the 1-line in the Brillouin zone, which define the four possible magnetic irreps of the
magnetic space group Pnma1′. In the last two columns the resulting superspace group is indicated by its label and the set of generators. The
additional generators {1′|000 1

2 } and {1̄|0000} are common to the four groups and are not listed. For simplicity, as usual, we use a single
label for the irrep of the little co-group and for the corresponding small irrep, full irrep, etc.

irrep 1 mx 2y mz 1′ Superspace group Generators

m11 1 1 1 1 −1 Pnma1′(0β0)000s {mx|
1
2

1
2

1
2 0}, {mz|

1
2 0 1

2 0}
m12 1 −1 1 −1 −1 Pnma1′(0β0)s0ss {mx|

1
2

1
2

1
2

1
2 }, {mz|

1
2 0 1

2
1
2 }

m13 1 −1 −1 1 −1 Pnma1′(0β0)s00s {mx|
1
2

1
2

1
2

1
2 }, {mz|

1
2 0 1

2 0}
m14 1 1 −1 −1 −1 Pnma1′(0β0)00ss {mx|

1
2

1
2

1
2 0}, {mz|

1
2 0 1

2
1
2 }

Table 3. Representative operations of superspace group Pnma1′(0β0)000s described using generalized Seitz-type symbols (left column)
and symmetry cards as used in the program JANA2006 [8]. The operations with time reversal are obtained by multiplying the first eight
operations by {1′|000 1

2 }, as indicated symbolically in the last row.

{1|0000} x1 x2 x3 x4 +m
{2x|

1
2

1
2

1
2 0} x1 + 1/2 −x2 + 1/2 −x3 + 1/2 −x4 +m

{2y|0 1
2 00} −x1 x2 + 1/2 −x3 x4 +m

{2z|
1
2 0 1

2 0} −x1 + 1/2 −x2 x3 + 1/2 −x4 +m

{1̄|0000} −x1 −x2 −x3 −x4 +m

{mx|
1
2

1
2

1
2 0} −x1 + 1/2 x2 + 1/2 x3 + 1/2 x4 +m

{my|0 1
2 00} x1 −x2 + 1/2 x3 −x4 +m

{mz|
1
2 0 1

2 0} x1 + 1/2 x2 −x3 + 1/2 x4 +m

{1′|000 1
2 } x1 x2 x3 x4 + 1/2 −m

· · · × {1′|000 1
2 }

appropriate phase constraints between the inversion-related Fe
atoms to check for the existence of inversion symmetry were
not considered [34]. Therefore the most reasonable scenario
remains the symmetry sequence depicted above.

4.1.2. The incommensurate phase of CaFe4As3. This
metallic compound is orthorhombic and has, at room
temperature, the symmetry Pnma [35], with four independent
Fe atoms at Wyckoff positions 4c (x 1/4 z). At lower
temperatures, two magnetic modulated phases have been
reported [35]. The first one is stable in the temperature range
90 K < T < 26 K and is incommensurate, with k = (0β0)
(line1 of the Brillouin zone) and 0.375< β < 0.39. The little
magnetic co-group of k is the grey point group m2m1′, formed
by the symmetry operations {E,mx, 2y,mz, 1′,m′x, 2′y,m′z},
and the star has two arms (k and −k). The magnetic irreps
are classified according to the irreps of the little co-group
(see table 2) and there is a one-to-one relationship between
each irrep and a magnetic superspace group. These groups,
obtained by applying the rules previously discussed, are
listed in table 2. It is experimentally observed that the active
irrep for the first phase transition of CaFe4As3 is m11 [36].
According to table 2, this irrep implies a superspace symmetry
Pnma1′(0β0)000s for this modulated phase. The symmetry
cards for this superspace group are depicted in table 3.

The constraints imposed by the symmetry on the
magnetic modulation can be derived from equation (6) by
taking into account the invariance of the positions of the Fe
atoms under the operation (my|0 1

2 0). These constraints force

the magnetic modulation of the Fe atoms to satisfy

Mx(−x4) = −Mx(x4), My(−x4) = My(x4),

Mz(−x4) = −Mz(x4).
(22)

Equation (22) implies that the x and z components of
the modulation can have only sine terms in their Fourier
series, while only cosine terms are allowed for the y
component. According to the experiments, the magnetic
modes are aligned along the y axis. Consequently, for a
single irreducible magnetic spin wave of symmetry m11,
the modulation functions (Mx(x4), My(x4), Mz(x4)) must
have the form (0,Mi

y,1c cos(2πx4), 0), with i = 1–4 labelling
the four independent Fe atoms in the reference unit cell.
Only four parameters are needed to describe the magnetic
structure. Once again, as in the first example, the fundamental
symmetry constraint here is not the limitation to cosine
functions of the spin modulation (which is due to a convenient
choice of the global phase of the magnetic modulation),
but the fact that the modulation functions of the four
independent Fe atoms must be in phase. This symmetry
constraint is counterintuitive as it involves atoms that are
symmetry-independent in the paramagnetic phase, but it is
absolutely necessary in order to restrict the modulation to
a mode having the transformation properties of a single
irrep. Arbitrary phase shifts between the modulations of the
independent Fe atoms imply the superposition of at least
two m11 modes with arbitrary complex amplitudes, and
this necessarily breaks the transformation properties that a
magnetic configuration driven by a single m11 mode should
have.
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Table 4. Relation among the modulation functions My(x4) of the magnetic moments along the y direction for the atoms of a Wyckoff orbit
4c within the superspace group Pnma1′(0β0)000s. In the fourth column, the modulation functions considered in [36] are shown for
comparison. β is the y component of the incommensurate propagation vector k = (0β0) and l stands for a lattice vector of the basic
structure labelling a particular unit cell.

Superspace operation Position in the basic structure My(x4) My(k · l)

{1|0000} atom 1: x, 1/4, z Mi
y,1c cos(2πx4) Mi cos[2π(k · l +8i)]

{2y|0 1
2 00} atom 2: −x, 3/4,−z Mi

y,1c cos(2πx4) Mi cos[2π(k · l +8i +
β

2 )]

{mz|
1
2 0 1

2 0} atom 3: x+ 1/2, 1/4,−z+ 1/2 −Mi
y,1c cos(2πx4) −Mi cos[2π(k · l +8i)]

{mx|
1
2

1
2

1
2 0} atom 4: −x+ 1/2, 3/4, z+ 1/2 −Mi

y,1c cos(2πx4) −Mi cos[2π(k · l +8i +
β

2 )]

As summarized in table 4, the modulation functions of
symmetry related atoms can also be determined from (6)
for each of the four Wyckoff orbits. The last column in
table 4 indicates the restrictions on the spin modulations of
any of the four independent Wyckoff orbits of Fe atoms, as
obtained in [36] from a conventional representation analysis.
The appearance in this mode description of the phase
shift of β

2 for atoms with different positions along the y
direction is only a minor nuisance caused by the different
parametrization of the modulations (which uses the argument
k · l instead of the argument k · (l+ rµ) adopted in superspace
formalism). If this latter is used, this phase shift disappears
and, more importantly, the definition of the modulation
functions becomes independent of the choice of the ‘zero’
cell. However, the real important difference between the two
descriptions stands in the free relative phases 8i between
the modulations of the four independent Fe atoms that are
included in this standard representation mode description.
This implies the need of seven parameters for describing
the structure: four real amplitudes for the four independent
Fe sites, plus three phases, since one phase can always
be arbitrarily chosen to be zero. In contrast, as shown in
table 4, the superspace analysis shows that there are only four
free parameters, corresponding to the amplitudes of the four
independent modulation functions, since the four modulations
of the four Wyckoff orbits are constrained to be in phase.
The model refined in [36] does not include this symmetry
restriction. This means that the magnetic point group of the
reported model is, in fact, m2m1′, i.e. a symmetry polar along
y, rather than the mmm1′ point-group symmetry assumed in
the paper.

Therefore, inadvertently, the magnetic structural model
proposed in [36] for the incommensurate phase of CaFe4As3
is a non-centrosymmetric one. It is interesting to see how large
are the deviations of this refined model with respect to the
actual symmetry constraints for a single m11 mode structure
or, equivalently, for the correct centrosymmetric superspace
group symmetry Pnma1′(0β0)000s. The reported refined
phases (see table 4) are 82 = 0.14(3), 83 = 0.45(3), 84 =

0.01(4), with the choice 81 = 0. Therefore, the deviations
from the ‘symmetric’ values 0 or 1/2 are very small in all
cases, close to their standard deviations, except for phase 82.

Again in this example, the differences with the
superspace approach originate in the fact that the employed
basis functions are not symmetry adapted for the operations
interchanging k and −k. These symmetry operations are
usually disregarded in the representation method applied to

incommensurate structures. Atoms belonging to the same
Wyckoff orbit in the paraelectric phase, but related by
operations that transform k into −k, are usually considered
to be split into independent orbits. This assumption is, in
general, not correct and a fully consistent description in
terms of irrep basis modes requires to account for relations
among these ‘split’ atoms that originate in the operations
of the coset g−k�p,k. In addition, usually the constraints
on the basis modes of incommensurate irreps coming from
the need to build a single irrep mode are not considered.
As we have seen in this example this additional restriction
can imply fixed phase relations between the modulations
pertaining to atoms that are independent in the paramagnetic
phase. The need to extend the usual representation analysis
and to consider the symmetry relations associated with a given
irrep for operations transforming k into −k has been pointed
out and worked out in some recent publications [37–40] by
different methods, including a so-called non-conventional use
of corepresentations [37]. These works were mainly motivated
by the need to rationalize the symmetry properties of
multiferroic materials, but the extension of the representation
method to include these operations is necessary for all
incommensurate magnetic structures. In order to do that the
use of corepresentations is, however, not necessary because
ordinary irreps define unambiguously the transformation
properties of the corresponding magnetic modulation for
operations transforming k into −k (even if described with
complex amplitudes). Furthermore, as shown in the simple
examples above, once the superspace symmetry associated
with a given active irrep is identified, this latter is not further
required and the superspace group provides automatically
all relevant symmetry constraints, including those coming
from the operations transforming k into −k, on the magnetic
modulation and any other degree of freedom.

4.1.3. Phase II of chromium. Chromium has a bcc structure
with a space group Im3̄m in its paramagnetic phase, and
exhibits two distinct incommensurate modulated magnetic
phases (see [41, 42] and references therein). In one of these
two phases (hereafter referred to as phase II) the magnetic
moments are ordered according to a longitudinal modulation
with a propagation vector (00γ ) (line1 or DT in the Brillouin
zone), with γ ≈ 0.95. The little group of this vector is I4mm1′.
The active irrep is mDT4 and the corresponding small irrep is
one-dimensional (see table 5). This irrep has a star with six
arms. However, as we are interested in single-k modulations,
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Table 5. Irreducible representations of the little co-group 4mm1′ that define the two irreps of the magnetic space group Im3̄m1′ with
wavevector (00γ ), which can be active in chromium. The corresponding irrep matrices for the extended little group 4/mmm1′ in a conjugate
ordered basis are obtained by applying equation (18), and knowing that the matrix A in equation (19) associated with the inversion operation
(1̄|000) is [1] (1-dim) and [0,1; 1,0] (2-dim), for mDT4 and mDT5, respectively.

E 2z 4z 4−1
z mx my mxy m−xy 1′

mDT4 1 1 1 1 −1 −1 −1 −1 −1

mDT5
(

1 0
0 1

) (
−1 0
0 −1

) (
−i 0
0 i

) (
i 0
0 −i

) (
0 −1
−1 0

) (
0 1
1 0

) (
0 i
−i 0

) (
0 −i
i 0

) (
−1 0
0 −1

)

we will limit our analysis to the subspace formed by the pair
of vectors k and −k, and work with the extended little group
�p,k,−k, which is I4/mmm1′ = I4mm1′+(1̄|000)I4mm1′ [43].

With the rules discussed in section 3.3, the determination
of the symmetry of this modulated phase is straightforward.
One has just to add a shift 1/2 along the internal space
to the operations in the little co-group having character
−1 for the irrep mDT4 (see table 5) and no shift
to the coset representative g−k = (1̄|000). This yields
the superspace group I4/mmm1′(00γ )00sss, which has as
generators: {4z|0000}, {mx|000 1

2 }, {1̄|0000} and {1′|000 1
2 }.

Notice that the extended little group does not coincide in
this case with the full group and, as a result, the superspace
group does not contain all the operations present in the
paramagnetic phase. This symmetry corrects the superspace
group previously assigned in [1] to phase II of chromium,
which, as already mentioned, overlooked the effect of the
symmetry operation {1′|000 1

2 }.
The restrictions on the magnetic and positional struc-

ture of the compound that result from the symmetry
I4/mmm1′(00γ )00sss can be easily derived. In the para-
magnetic phase, the single Cr atom per primitive cell is
located at the origin and is invariant for all operations of the
paramagnetic group. Hence, according to equation (5), the
modulation of the corresponding magnetic moment M(x4) =

(Mx(x4),My(x4),Mz(x4)) must satisfy the relations

(Mx(x4),My(x4),Mz(x4)) = (−Mx(x4),My(x4),Mz(x4))

(Mx(x4 + 1/2),My(x4 + 1/2),Mz(x4 + 1/2))

= (Mx(x4),−My(x4),−Mz(x4))

(Mx(−x4),My(−x4),Mz(−x4))

= (Mx(x4),My(x4),Mz(x4))

(Mx(x4 + 1/2),My(x4 + 1/2),Mz(x4 + 1/2))

= (−Mx(x4),−My(x4),−Mz(x4)).

(23)

These relations originate in the action of the four generators of
the group on the modulation functions. Together, they imply
that the x and y components of the magnetic moments must
vanish by symmetry, while the Fourier decomposition of the z
component must only include cosine odd terms:

Mz(x4) =
∑

n=odd

Mzn cos(2πnx4). (24)

Similar conclusions can be obtained for the possible
structural modulations induced through spin–lattice coupling.
For instance, a displacement modulation u(x4) of the atomic
positions or a charge ordering modulation ρ(x4) are subject

to equations analogous to (23) but with local transformations
complying with those of a polar vector or a scalar field,
respectively. This implies that any displacive modulation must
correspond to displacements along z and can have only even
sine Fourier terms, while an induced charge ordering wave can
only have cosine even Fourier terms:

uz(x4) =
∑

n=even
uz

n sin(2πnx4) (25)

ρ(x4) =
∑

n=even
ρn cos(2πnx4) (26)

Hence, as in the conventional representation analysis,
the superspace group of phase II of chromium permits only
a longitudinal magnetic modulation for this irrep. However
through the assignment of the superspace symmetry one
obtains the additional information that higher odd harmonics,
with propagation vectors nk (n odd), are allowed as secondary
induced spin waves, as long as they are in phase with the
primary longitudinal spin wave. Indeed third-order magnetic
diffraction satellites have been observed [41, 42, 44],
indicating the existence of a significant third-order harmonic
in the spin modulation. Similarly, equation (25) imposes that
any possible lattice modulation resulting from the spin–lattice
coupling must maintain the average position of the Cr
atoms and may only develop even-order harmonics. These
conclusions are also in agreement with the experimental data,
which reveal second- and fourth-order diffraction satellites
that have been ascribed to a strain modulation produced
by longitudinal atomic displacements [41, 42, 44]. Given
that the global phase of the incommensurate modulation is
arbitrary, the restriction of the Fourier series (25) to sine
functions, together with (24), express that the relative phase
shift between displacive and magnetic modulations, must be
±
π
2 .

The assignment of a superspace symmetry to phase
II of chromium automatically encompasses all the allowed
secondary distortions and their constraints. These latter
are obtained as symmetry properties, but it is important
to realize that they are caused by the restrictions on the
possible physical coupling mechanisms that can induce these
secondary modulations. For instance, the higher harmonics of
the magnetic modulation are the result of coupling terms of
the type

Sn(k)S(−nk)+ Sn(−k)S(nk), (27)

which necessarily induces at equilibrium a non-zero
amplitude of the nth harmonic, S(nk), proportional to the nth
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power of the primary order parameter:

S(nk) ∝ Sn(k). (28)

But coupling terms of the type (27) are only allowed for n odd,
because they must be invariant for time reversal. Furthermore,
equation (28) also implies that the secondary anharmonic
modulations must be in phase with the primary harmonic,
as in equation (24). Similarly, the restrictions on the induced
structural modulation originated in the spin–lattice coupling
can be obtained through the analysis of the symmetry allowed
couplings. A modulation of atomic displacements along z with
a wavevector nk (n even) has the form

un(l) = Q(nk)eze−i2πnk·l
+ Q(−nk)ezei2πnk·l (n even), (29)

with un(l) denoting the displacement of the Cr atom at
the lth unit cell, ez a normalized displacement vector
along z and Q(−nk) = Q(nk)∗. The complex amplitudes
(Q(nk),Q(−nk)) transform according to irrep DT1 (identity
small irrep). Irrep DT1 also describes the transformation
properties of (Sn(k), Sn(−k)) with n even (although in a
different basis). As a consequence, the following coupling
term is allowed by symmetry:

i(Sn(k)Q(−nk)− Sn(−k)Q(nk)) (n even), (30)

and implies a non-zero equilibrium value of (Q(nk),Q(−nk))
in the form

Q(nk) ∝ iSn(k) (n even). (31)

Although (31) is an approximation, the predicted relative
phase shift of π

2 it imposes between the magnetic and the
displacive waves is symmetry forced and has a general
validity. Notice that the spin–lattice coupling terms of the
type (30) are restricted to n even due to the requirement
of time reversal invariance. Also, the absence of transversal
displacive modulations in phase II of chromium can be
verified by the impossibility of forming coupling terms
similar to (30) involving these displacements and the primary
magnetic modulation. Finally, the assignment of a superspace
group to phase II of Cr implies establishing symmetry
constraints to its crystal tensor properties, either magnetic or
non-magnetic. As the point-group symmetry is given by the
centrosymmetric grey group 4/mmm1′, ferromagnetism and
linear magnetoelasticity are necessarily forbidden.

4.2. The case of multidimensional small irreps

In section 4.1 we have seen that, in the case of single-k
magnetic orderings with a 1-dim small irrep, there is
a one-to-one correspondence between each irrep and a
superspace group. Thus, the restrictions on the first harmonic
of the magnetic modulation originated in the superspace
symmetry are equivalent to the restrictions imposed by
the adapted symmetry mode analysis, if the effect of
the symmetry operations that transform k into −k were
taken into account. For multidimensional small irreps,
the two approaches have more fundamental differences,
since the one-to-one correspondence between irreps and
superspace groups disappears. For multidimensional small

irreps (N > 1), the solution of (17) depends in general on
the specific direction taken by the N-dimensional vector
{S1(k), . . . , SN(k)}. Therefore, several different superspace
symmetry groups are, in principle, possible for the same irrep.

The different possible superspace groups that can
result from a given active irrep with N > 1 can be
determined by applying (17) without the need to assign
any specific microscopic meaning to the components of the
order parameter S(k). Programs like ISODISTORT [27] or
JANA2006 [8] do this calculation for any irrep. Once the
possible superspace groups for a given active irrep are derived
and one of them is assigned to a magnetic phase, the symmetry
restrictions on the magnetic modulation and all other degrees
of freedom can be directly obtained, as in the previous cases.
Let us consider one concrete example.

4.2.1. Phase I of chromium. Phase I of chromium
corresponds to a transversal spin modulation with propagation
vector (0 0 γ ) that transforms according to the irrep
mDT5 of Im3̄m (see table 5). This irrep is four-
dimensional and the order parameter is fully defined by two
complex amplitudes (S1(k), S2(k)) = (S1ei2πφ1 , S2ei2πφ2).
The possible superspace groups can be obtained from the
analysis of how these amplitudes are transformed under
the extended little group 4/mmm1′ of the vector k and
by applying the invariance equation (17). Let us consider
some examples for operations without time reversal since,
as seen in section 3, the extension to the operations with
time reversal is straightforward. According to table 5,
the operation (2z|000) transforms (S1ei2πφ1 , S2ei2πφ2) into
(−S1ei2πφ1 ,−S2ei2πφ2). This means that the superspace
operation {2z|000 1

2 } will always be present for any value
of the amplitudes of the order parameter. The operation
(4z|000) yields (−iS1ei2πφ1 , iS2ei2πφ2), meaning that the
superspace symmetry operation {4z|000 1

4 } will be present
for configurations of type (S1ei2πφ1 , 0) (or similarly
operation {4z|000 3

4 } for (0, S2ei2πφ2)). The inversion (1̄|000),
transforms the order parameter into (S2e−i2πφ2 , S1e−i2πφ1).
Hence, according to equation (17) a superspace symmetry
operation {1̄|000φ1 + φ2} exists for configurations of the
type (Sei2πφ1 , Sei2πφ2). In this way, all special directions in
the order parameter space can be explored and their isotropy
superspace groups derived. Table 6 lists the seven possible
magnetic symmetries. The groups I4221′(00γ )q00s and
I4221′(00γ )q̄00s are associated with physically equivalent
enantiomorphic spin configurations5.

As in the case of phase II, the restrictions on the Cr
modulations for all the possible alternative symmetries in
table 5 can be derived by using the equations discussed
in section 2. These restrictions are summarized in table 7
and figure 2 depicts schematically the form of the magnetic
configurations for some of the symmetries. It is illustrative to
see the origin of some of these restrictions. For instance, the
tetragonal superspace groups force the spin wave to adopt a

5 The two groups are mathematically equivalent by interchanging k and
−k [25, 28], but we prefer to distinguish the symmetry of the two solutions
keeping unchanged the choice of the propagation vector.
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Table 6. Possible superspace symmetries of an incommensurate magnetic modulation in a Im3̄m structure with propagation vector
k = (00γ ) and irrep mDT5. The restrictions on the form of the order parameter required for each specific symmetry are indicated in the first
column. In general, only one direction of the order parameter is shown from the set of equivalent ones, except in the case that the symmetry
of different equivalent domains corresponds to enantiomorphic groups. The choice made of the arbitrary global phase of the spin
modulation is shown in the third column.

Order parameter Superspace group Phase Generators (besides {1′|000 1
2 })

(Sei2πφ, 0) I4221′(00γ )q00s φ = 0 {4z|000 1
4 }{2y|0000}

(0, Sei2πφ) I4221′(00γ )q̄00s φ = 0 {4z|000 3
4 }{2y|0000}

(Sei2πφ, Sei2πφ) Immm1′(00γ )s00s φ = 0 {2z|000 1
2 }{1̄|0000}{mx|000 1

2 }

(Sei2πφ, Sei2π(φ+ 1
2 )) Fmmm1′(00γ )s00s φ = − 1

4 {2z|000 1
2 }{1̄|0000}{mxy|000 1

2 }

(Sei2πφ1 , Sei2πφ2) I112/m1′(00γ )00s0s φ1 = −φ2 {2z|000 1
2 }{1̄|0000}

(S1ei2πφ, S2ei2πφ) I2221′(00γ )00ss φ = 0 {2z|000 1
2 }{2y|0000}

(S1ei2πφ, S2ei2π(φ−1/2)) F2221′(00γ )00ss φ = 1
8 {2z|000 1

2 }{2xy|0000}

(S1ei2πφ1 , S2ei2πφ2) I1121′(00γ )00ss — {2z|000 1
2 }

Table 7. Symmetry restrictions on the Fourier series describing the modulations of one atom at the origin for each of the possible magnetic
superspace groups listed in table 5. Components not explicitly listed are zero. The cross-relations between the amplitudes of sine and cosine
terms are indicated symbolically. If the modulations are restricted to sine or cosine terms, a parenthesis with the word is added. If necessary,
the restriction in the order-type of the harmonics is also indicated. The general restriction caused by the symmetry operation {1′|000 1

2 } is
given in the second row.

Magnetic M(x4) Displacive uz(x4) Charge/occupation ρ(x4)

Superspace group
M(x4 +

1
2 ) = −M(x4)

odd harmonics
u(x4 +

1
2 ) = u(x4)

even harmonics
ρ(x4 +

1
2 ) = ρ(x4)

even harmonics

I4221′(00γ )q00s Mx(sin /4n+ 1) = −My(cos /4n+ 1)
Mx(sin /4n+ 3) = My(cos /4n+ 3)

uz(sin /4n) ρ(sin /4n)

I4221′(00γ )q̄00s Mx(sin /4n+ 1) = My(cos /4n+ 1)
Mx(sin /4n+ 3) = −My(cos /4n+ 3)

uz(sin /4n) ρ(sin /4n)

Immm1′(00γ )s00s Mx = 0
My(cos)

uz(sin) ρ(cos)

Fmmm1′(00γ )s00s Mx(cos) = My(cos) uz(sin) ρ(cos)

I112 / m1′(00γ )s0s Mx(cos)
My(cos)

uz(sin) ρ(cos)

I2221′(00γ )00ss Mx(sin)
My(cos)

uz(sin) ρ(cos)

F2221′(00γ )00ss Mx(sin) = −My(sin)
Mx(cos) = My(cos)

uz(sin) ρ(cos)

I1121′(00γ )ss Mx(x4),My(x4) uz(x4) ρ, no condition

helical configuration. This is due to the fact that operations
such as {4z|000 1

4 } force the modulation of an atom at the
origin of the basic unit cell to verify the condition

M(x4 +
1
4 ) = 4+z · M(x4). (32)

This condition implies that the x and y components of the spin
modulation must be in right-handed quadrature. Furthermore,
equation (32), combined with the relation M(x4 +

1
2 ) =

−M(x4) forced by the operation {1′|000 1
2 }, implies that the

z component of the magnetic modulation must be zero. This
means that the symmetry only allows transversal modulations.
In addition, the operation {2y|0000} requires that

M(−x4) = 2y · M(x4). (33)

Together with equation (32) this implies that the first harmonic
of M(x4) must be of the form

(M1
x (x4),M1

y (x4)) = (M1 sin(2πx4),−M1 cos(2πx4)) (34)

with only a free parameter, M1. Similarly, if a third harmonic
exists, it must be of the form

(M3
x (x4),M3

y (x4)) = (M3 sin(2πx4),M3 cos(2πx4)), (35)

with opposite sign correlation of the two components. These
relations are then repeated for higher harmonics depending
on their parity. The first harmonic is therefore a helical
arrangement along the z axis, with the spins rotating in the
xy plane (see figure 2).

There are group–subgroup relations among some of the
possible symmetries listed in table 7, implying that some of
the constraints are common to some sets of symmetries, while
others disappear as the symmetry is lowered. The operation
{2z|000 1

2 } is common to all of the groups and implies that
the magnetic modulation function of an atom at the origin
must satisfy the condition M(x4 +

1
2 ) = 2z · M(x4). This

requirement, together with the condition M(x4+
1
2 )=−M(x4)

imposed by the operation {1′|000 1
2 }, restricts the modulations
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Figure 2. Scheme of possible magnetic modes of different superspace symmetry for a bcc structure, with a propagation wavevector
(0 0 ∼0.96) and irrep mDT5. The superspace group corresponding to each case is indicated (see table 6). The figures depict about half the
wavelength of the incommensurate spin wave. The mode observed in phase I of chromium is the one with superspace group
Immm1′(00γ )s00s.

to be transversal even if higher-order harmonics are present.
The non-centrosymmetric orthorhombic symmetries produce
elliptical rotations of the magnetic moments around the
propagation direction, with the axes of the elliptical orbit
fixed along the x and y directions (for the I2221′(00γ )00ss
symmetry) or the oblique directions (1 1 0) and (−1 1 0) (for
the case of F2221′(00γ )00ss). It is remarkable that only in
the case of a fully arbitrary modulation in the xy plane does
the mDT5 mode produce a polar symmetry.

According to table 7, the possible induced displacive
structural modulations of an atom at the origin must be
longitudinal for all possible symmetries. This is forced
by the mutually incompatible constraints imposed by the
operations {1′|000 1

2 } and {2z|000 1
2 } for transversal displacive

modulations. In the case of all higher symmetry groups,
the additional symmetry operations constrains further the
modulation to sine Fourier terms, while in the case of the
tetragonal groups, the displacive modulation is restricted to
4n harmonics due to the relation u(x4 +

1
4 ) = u(x4) forced

by the operation {4z|000 1
4 } (or the equivalent relations with

translation 3/4).
Similar to the previous example, the symmetry restric-

tions on the direction, phase and possible harmonics of the
structural modulations can be traced back to the symmetry
constraints on the spin–lattice couplings. If we denote by
Q(2k) the complex amplitude of a longitudinal displacive
modulation with wavevector 2k (see equation (29)), then the
lowest-order coupling with the order parameter (S1(k), S2(k))
is given by the symmetry invariant

i(S1(k)S2(k)Q(−2k)− S1(−k)S2(−k)Q(2k)). (36)

This coupling is similar to that found in phase II for an
order parameter of symmetry mDT4 (see equation (30)). The
difference here is that it is inactive for the special directions of
the order parameter corresponding to helical configurations,
where either S1(k) or S2(k) are zero. According to
equation (36), the amplitude of the induced second harmonic
longitudinal modulation is given to first approximation
by Q(2k) ∝ iS1(k)S2(k) and therefore this modulation
will be zero in an helical phase, in agreement with the
conclusion derived directly from the superspace symmetry.
This incompatibility of the helical arrangement with a
2k-induced structural modulation has been occasionally
pointed out under particular physical models of Cr [45, 46].
A comparison of the derivation of this incompatibility in [45]
with the one given above is a vivid illustration of the power
and simplicity of superspace formalism.

According to the experimental results, the magnetic
moments in phase I of Cr are aligned along either the x
or y directions, with the coexistence of both orientations as
domains [41]. According to tables 6 and 7, the symmetry
of this configuration is given by the orthorhombic group
Immm1′(00γ )s00s. A tetragonal helical arrangement was
also proposed in some early works [47], but was later
discarded. The experimental distinction between a collinear
modulation with equilibrated domain populations and a
helical arrangement can sometimes be difficult, and the
possibility of a helical ordering in phase I of Cr has persisted
in the literature [46, 48]. This contrasts with the symmetry
analysis presented above, which shows that a circular helical
arrangement can be directly discarded, since its superspace
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symmetry is incompatible with the structural modulation with
wavevector 2k that has been detected in several diffraction
studies [41, 42, 44].

4.2.2. Superspace symmetry versus representation analysis
for N > 1. In the previous example, the assignment of
the irrep mDT5 to the magnetic ordering only constrains the
modulation of the Cr atoms to be a transversal harmonic
spin wave of any type. In contrast, each of the possible
superspace group symmetries for this irrep restricts the
form of the modulation further. Obviously an extended
representation method, that would specialize the symmetry
adapted functions to the special directions in representation
space required for each of the superspace groups, would
be equivalent to the superspace approach in what concerns
the symmetry conditions on the first harmonic modulation.
But this complete representation methodology would be
unnecessarily complicated, as the most general form of the
modulation, including magnetic and structural waves, and
any harmonic, can be directly obtained for each special irrep
direction from its associated superspace group.

The power of the superspace formalism is that, once a
magnetic superspace symmetry is assigned (either derived as
a possible one for a certain active irrep, or from inspection
of the properties of the experimental data), representation
analysis and group theory are no longer needed to describe
the structure or its properties. There is no need for building up
basis modes, as done in the standard representation method,
or to appeal either to the underlying irrep properties of
the magnetic ordering. Superspace symmetry operations are
defined in an unambiguous form, analogous to space group
operations, and the resulting symmetry restrictions on the
magnetic modulations and on any other degree of freedom can
be directly derived. Then, both the magnetic and the atomic
structure can be described (and refined) in a generalized
crystallographic manner, considering an asymmetric unit
for both the atomic positions and the modulations, with
specific constraints on the modulations of the atoms at special
positions.

The very particular features of helical structures and other
highly regular spin arrangements are usually being introduced
by ad hoc restrictions on the basis irrep modes, when trying
to fit their diffraction data [48]. The example above shows
that some of the regular features of these arrangements can
be assigned to the superspace symmetry of the phase. These
features are therefore robust and exact in the sense that their
breaking, as it is a symmetry break, requires a thermodynamic
phase transition.

5. Incommensurate magnetic phases with two active
irreducible representations

5.1. General concepts

In the previous examples, we have essentially considered
possible superspace symmetries of single-k magnetic phases

with a unique primary irrep magnetic mode6. This implies
that the symmetry associated with secondary modes must be,
by definition, fully compatible with the symmetry dictated by
this primary mode. In the cases discussed above, for example,
higher harmonics of the magnetic modulation transforming
according to different irreps may occur, but they do not
break further the symmetry of the phase, which is solely
dictated by the primary mode. However, magnetic phases
may also result from the condensation of several primary
irrep modes. The symmetry of these more general single-k
magnetic configurations can be straightforwardly derived by
considering the intersection of the superspace groups that
would result from each of the primary irrep modes, taken
separately. For an experimental example where this type of
symmetry analysis has been done, see [12].

Let us then consider a phase that results from the
superposition of two irrep primary modes. We will assume
that these two modes share a common propagation vector,
so that the resulting phase is a single-k magnetic phase
describable by a (3 + 1)-dim superspace group. The
superspace groups that may arise from these two modes,
taken separately, are not group–subgroup-related, and their
intersection depends, in general, on the relative phases of
the corresponding modulations. As seen in section 3, in the
case of the symmetry operations transforming k into −k,
the translational part along the coordinate x4 depends on the
choice of the origin in the internal space, i.e. it depends on the
global phase associated with the modulation. In order to derive
the symmetry of the superposition of two active irrep modes,
one must then explicitly consider this dependence. When there
is an incommensurate modulation with a single irrep, one is
always allowed to choose this phase as zero. However, if two
primary irrep modulations are superposed, only one of the
phases is arbitrary, and the superspace symmetry depends in
general on the relative phase shift of the two irrep magnetic
modulations.

A shift of the global phase of a modulation by a
quantity φ (in 2π units) is equivalent to a translation of
the origin of the internal coordinate x4 by −φ. Under
this origin shift, a symmetry operation {R, θ |t τo} becomes
{R, θ |t τo − RIφ + φ}, where RI is defined in equation (4).
This means that the operations that keep k invariant do not
change, while those transforming k into −k transform into
{R, θ |t τo + 2φ}. The intersection of the symmetry groups of
the different primary irrep modulations will then depend on
their relative phases through their presence in their respective
symmetry operations. Let us consider, for instance, the case
of two irrep modes that keep inversion {1̄|0000} in their
respective isotropy superspace groups. The translation along
the internal space is zero in the two groups, because the
global phase of each irrep magnetic mode has been chosen
conveniently. However, if the global phases (in 2π units) of
the two modes are φ1 and φ2 (with respect to the position
of the inversion centre along the internal space), then their
inversion symmetry operations are respectively {1̄|0002φ1}

6 The term primary is used here in the sense that the presence of other
(secondary) modes within the same phase is explained just as induced or
secondary effects.
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Table 8. Irreps of the little co-group m2m1′ of the 1 line in the Brillouin zone, which define the four possible magnetic irreps of the
magnetic space group Pbnm1′. In the last two columns the resulting superspace group is indicated by its label and the set of generators. The
generators: {1′|000 1

2 } and {1̄|0000}, common to the four groups, are not listed.

irrep 1 mx 2y mz 1′ Superspace group Generators

m11 1 1 1 1 −1 Pbnm1′(0β0)000s {mx|
1
2 0 1

2 0}, {mz|00 1
2 0}

m12 1 −1 1 −1 −1 Pbnm1′(0β0)s0ss {mx|
1
2 0 1

2
1
2 }, {mz|00 1

2
1
2 }

m13 1 −1 −1 1 −1 Pbnm1′(0β0)s00s {mx|
1
2 0 1

2
1
2 }, {mz|00 1

2 0}
m14 1 1 −1 −1 −1 Pbnm1′(0β0)00ss {mx|

1
2 0 1

2 0}, {mz|00 1
2

1
2 }

Table 9. Magnetic superspace groups resulting from the superposition of two primary magnetic irreps with a relative phase shift 18 for a
paramagnetic space group Pbnm1′ and a common propagation wavevector k = (0β0) (see table 2 of [37] for comparison).

m11 m12 m13 m14

18 = 1
4 +

n
2 (mod. 1) m11 Pb21m1′(0β0)000s

m12 P2121211′(0β0)000s Pb21m1′(0β0)s0ss
m13 P21nm1′(0β0)000s Pbn211′(0β0)s00s Pb21m1′(0β0)ss0s
m14 Pbn211′(0β0)000s P21nm1′(0β0)00ss P2121211′(0β0)0s0s Pb21m1′(0β0)0sss

18 = n
2 (mod.1) m11 Pbnm1′(0β0)000s

m12 P21/n1′(0β0)00s Pbnm1′(0β0)s0ss
m13 P21/m1′(0β0)00s P21/b1′(0β0)0ss Pbnm1′(0β0)s00s
m14 P21/b1′(0β0)00s P21/m1′(0β0)0ss P21/n1′(0β0)s0s Pbnm1′(0β0)00ss

18 (arbitrary) m11 Pb21m1′(0β0)000s
m12 P12111′(0β0)0s Pb21m1′(0β0)s0ss
m13 P11m1′(0β0)0s Pb111′(0β0)ss Pb21m1′(0β0)ss0s
m14 Pb111′(0β0)0s P11m1′(0β0)ss P12111′(0β0)ss Pb21m1′(0β0)0sss

and {1̄|0002φ2}. Hence, a superposition of the two modes will
maintain inversion only if φ2 − φ1 = n/2. Similarly, if two
irrep modes with a common k = (0β0) are superposed, a first
one having a symmetry {2z|00 1

2 0} (that is, {2z|00 1
2 2φ1} for

an arbitrary origin in the internal space) and a second one the
symmetry {2z|00 1

2
1
2 } ({2z|00 1

2
1
2 + 2φ2}, for the same generic

origin), then their combined effect will maintain the common
twofold axis only if φ2 − φ1 =

1
4 +

n
2 . We have then the

necessary ingredients to derive in a straightforward form the
possible superspace symmetries produced by the action of two
irrep modes with the same propagation vector.

Sometimes ferroelectricity or special magnetoelectric
effects originate in complex magnetic orders that involve
several primary irreps. We have seen, for instance in section 3,
that a single incommensurate irrep magnetic mode with a
1-dim small irrep cannot induce improper ferroelectricity.
However, the action of two 2-dim magnetic irrep modes can
break the centrosymmetry of a paramagnetic phase and induce
a secondary spontaneous polarization, with ferroelectric
properties. Therefore the knowledge of the symmetry that
results from the presence of several active irreps is especially
important for the analysis of possible multiferroic orderings.

5.2. Multiferroic phases in orthorhombic RMnO3 compounds

Let us consider the possible irrep magnetic orderings
with propagation vector k = βb∗ in a paramagnetic
phase of symmetry Pbnm1′ (standard setting Pnma1′).
This corresponds to the case of the orthorhombic rare-
earth manganites of type RMnO3 (R being a rare-earth
element) [49], which exhibit at low temperatures several

modulated magnetic structures with different types of
polar behaviour, some of them with two primary irrep
modes [50–53].

Table 8 lists the four different possible magnetic irreps
of Pbnm1′ for a propagation vector (0 β 0) and their
corresponding superspace groups, according to the general
rules explained in section 4. One can then calculate the
possible intersections corresponding to the superposition
with different relative phase shifts of two primary modes
(i.e. configurations of type m1i + m1j). These possible
superspace symmetries are listed in table 9 and can be
compared with table 2 in [37], where the non-magnetic
point groups of the nuclear structure were listed for the case
of two magnetic irreps combined in quadrature. Once the
different settings are taken into account, the point groups
listed there agree with those extracted from table 9. The
list in [37] was derived using a so-called ‘non-conventional
application of corepresentation analysis’. This reference
indeed considered a non-standard interpretation of the
concept of corepresentations. Here, we show that these point
groups can be straightforwardly obtained by using ordinary
irreducible representations of the paramagnetic grey group
and their associated superspace symmetries. Moreover, by
following the superspace formalism, one obtains not only the
point groups to be assigned to the structures, but also the
full magnetic symmetry that dictates the restrictions imposed
upon any degree of freedom and any tensor property.

The possible ferroic properties of an incommensurate
magnetic phase, in particular, are unambiguously defined by
the knowledge of its superspace group. From tables 8 and 9,
which apply to the RMnO3 compounds, several conclusions
can be directly extracted. Firstly, the symmetry operation
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{1′|000 1
2 } is always maintained for phases with two primary

irreps.
Therefore, ferromagnetism, ferrotoroidicity and linear

magnetoelastic or magnetoelectric effects are symmetry
forbidden in this type of phase. A second general conclusion
is that the superposition of two primary irrep modes that are
either in phase or in anti-phase can never induce improper
ferroelectricity, because all possible point groups include
space inversion. In contrast, space inversion is always broken
if the two modes are in quadrature (18= 1

4+
n
2 ), but that does

not guarantee the onset of ferroelectricity. As seen in table 9,
the combinations in quadrature m11+m12 and7 m13+m14
give rise to the non-polar and non-centrosymmetric point
group 222. For the remaining combinations in quadrature
of pairs of modes, the resulting point groups are polar,
and therefore an induced ferroelectric polarization is to
be expected. The direction of this spontaneous electric
polarization depends on the specific pair of irreps. For the
combination of distinct irreps, the electric polarization is
necessarily oriented along one of the two crystallographic
directions perpendicular to the wavevector. This corresponds
to the case of the cycloidal spin arrangements observed in
the RMnO3 compounds [52, 53]. But a polarization parallel
to the wavevector is expected for two irrep modes with the
same irrep and different global phases. Notice that, according
to table 9, only when the two superposed irreps have an
arbitrary relative phase shift is it possible to have an induced
polarization along an arbitrary direction in a crystallographic
plane. But, even in this case, where the polarization may
rotate in the plane as a function of temperature or the
external magnetic field, a linear magnetoelectric response
remains forbidden, due to the presence of the symmetry
operation{1′|000 1

2 }.
It is interesting to consider, within the framework of

tables 8 and 9, the properties of the different phases reported
for TbMnO3, a most studied representative member of the
RMnO3 family. This compound displays a first magnetic
phase transition at TN ≈ 41 K, driven by an active irrep of
symmetry m13. At lower temperatures, TC ≈ 28 K, a second
transition leads to a magnetic phase with a superposition in
quadrature m13 + m12 [53]. According to tables 8 and 9,
these two consecutive transitions correspond to the symmetry
breaking sequence:

Pbnm1′
(TN)
→ Pbnm1′(0β0)s00s

(TC)
→ Pbn211′(0β0)s00s.

The point group of the first magnetic phase is therefore
mmm1′, and all possible induced structural distortions
(restricted to even harmonics) keep space inversion. In the
second transition the point group is reduced to mm21′ and one
should expect an induced secondary polar structural distortion
with an electric polarization oriented along z.

The assigned superspace symmetries not only rationalize
the crystal tensor properties of these two phases but, when
applied on the possible form of the magnetic modulation, also

7 The symbol τ1 + iτ2 has been sometimes used to indicate the combination
in quadrature of two modes with irreps τ1 and τ2. This expression can be
misleading and is certainly outside the usual notation of group theory.

introduce simple relations between the amplitudes and phases
of the spin waves of the symmetry related magnetic atoms.
As some of the Tb atoms are only related by operations that
exchange k and −k, the symmetry relation between their spin
waves is not taken into account by the usual representation
analysis. It is remarkable that sometimes these relations have
been added, at least partially, with ad hoc arguments. For
instance, the amplitudes of the two split Tb orbits were forced
to be identical in [53], but their relative phase was refined,
when in fact this phase is also symmetry forced.

In the lower temperature magnetic phase of TbMnO3,
the magnetic modulation must comply with the superspace
group Pbn211′(0β0)s00s; if the magnetic modulation is
further restricted to be compatible with A-type local spin
arrangements [52], then the reported dominant cycloidal form
of the spin modulation [53] is directly obtained from the
symmetry conditions of the mentioned superspace group.
However, this superspace group also allows the presence
of magnetic modulations of types C, F and G. These
other types of modulations can introduce in the magnetic
modulation complex features beyond the simple cycloidal
model and they have indeed been observed, although with
weak amplitudes [52, 54].

Under the application of a magnetic field in the yz
plane, TbMnO3 undergoes a phase transition in which the
polarization rotates from the z to the x axis. According
to [55], this transition corresponds to a rotation of the plane
of the dominant A-type cycloid. In terms of active irreps, this
rotation of 90◦ of the cycloid plane implies a change of the
primary magnetic ordering to a superposition in quadrature
of type m13 + m11, which according to table 9, yields
the symmetry P21nm1′(0β0)000s, i.e. a phase polar along
x, with magnetic point group 2mm1′, explaining the flip of
the induced polarization. The above discussion shows that
the presence of a spontaneous electric polarization and its
orientation can directly be predicted by symmetry arguments,
independently of the microscopic mechanism at work.

6. Conclusion

The superspace formalism allows a systematic description
and application of the symmetry present in incommensurate
magnetic phases. Its relation with the usual representation
analysis method has been analysed showing the advantages
of a combined use of both approaches. The superspace group
defines not only the symmetry restrictions present in the
first harmonic of the modulation, corresponding to one or
more specific irreps, but it also automatically includes all
symmetry restrictions that are present in any other possible
induced secondary distortions, such as higher harmonics
in the modulated distortion. Magnetic modulated structures
are often purely sinusoidal within experimental resolution,
and can have a negligible coupling with the lattice, but
in the important cases where this coupling is significant
(as in multiferroics) and/or the cases where the magnetic
modulation becomes anharmonic, the use of the superspace
symmetry allows us to consider in a systematic way all
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possible degrees of freedom that, due to the symmetry break,
become unclenched.

The magnetic ordering and possible induced structural
distortions in an incommensurate magnetic phase are
restricted by its superspace symmetry group, and this property
is in general more restrictive than the mere description of
the magnetic modulation in terms of basis functions for one
or several irreps. A consistent comprehensive account of the
symmetry properties of single-k magnetic modulations must
include its transformation properties for operations changing
k into −k, and this is done automatically by the superspace
symmetry.

We have shown that single-k incommensurate magnetic
modulations have the symmetry operation, combining time
reversal and a semi-period phase shift of the modulation.
This ubiquitous simple symmetry operation implies important
general properties of these systems, as the grey character
of their magnetic point groups or the restriction to odd and
even harmonics of the magnetic and structural modulations,
respectively. To our knowledge, these general symmetry-
forced features of single-k magnetic phases, although rather
familiar for many experimentalists, seem to have never been
formulated in a general context, and their general validity
seems to be ignored (see, for instance, [56]).

An efficient approach to the determination and descrip-
tion of an incommensurate magnetic structure and to the
classification of its properties can be achieved by system-
atically exploring the possible superspace groups associated
with one or more irreps, cross-checking successively their
adequacy to the experimental data. Recent developments in
the programs JANA2006 [8] and ISODISTORT [27] provide
tools for the automatic calculation of the possible magnetic
superspace symmetries for any paramagnetic space group, any
propagation wavevector and any irrep. This should allow a
rapid and systematic exploration in experimental studies of
all possible spin configurations, from the highest to the lowest
possible symmetries.

The symmetry of commensurate magnetic modulations
corresponding to the lock-in of the propagation vector into
simple rational values (described by conventional Shubnikov
space groups) can be directly related to the superspace
symmetry of virtual or real neighbouring incommensurate
phases with irrational propagation vectors. The extreme
utility of this close relation between commensurate and
incommensurate symmetries is well known in the study of
non-magnetic structural modulations. We have not treated
here this topic because of a lack of space, but some specific
examples of its application in magnetic structures can be
found in [16]. There, it can be seen that, similar to the
case of a structural modulation, the magnetic symmetry of a
commensurate lock-in magnetic phase depends on the parity
of the numerator and denominator of the fraction describing
the commensurate wavevector, and well-defined parity rules
exist concerning, for instance, the presence of improper
(induced) ferroelectricity. The application of these rules is
especially useful to evaluate complex phase diagrams with
multiple commensurate and incommensurate phases.
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