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Magnetic Anisotropy Energy (MAE)

◮ Difference between total energies for two orientations of the
magnetization M̂ with respect to the crystal lattice:

EMAE = E (M̂1) − E (M̂2)

◮ Magnetocrystalline contribution to MAE is due to the spin
orbit coupling (SOC).
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Magnetic Anisotropy Energy (MAE)

◮ Difference between total energies for two orientations of the
magnetization M̂ with respect to the crystal lattice:

EMAE = E (M̂1) − E (M̂2)

◮ Magnetocrystalline contribution to MAE is due to the spin
orbit coupling (SOC).

◮ What is the specific mechanism that gives rise to the MAE for
a concrete system?

◮ Can we see a signature of MAE in the electronic structure?

◮ People strive to understand MAE to make it as high as
possible [Jesche et al. Nature Comm. (2014), Rau et al. Science

(2014), Khajetoorians & Wiebe Science (2014), Antropov &

Antonov PRB (2014), Antropov et al. SSC (2014)].
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Total energies and single-particle (band) energies

◮ Total energy within the DFT framework:

Etot =
occ∑
i

Ei−
1

2

∫
dr

∫
dr

′n(r)n(r
′)

|r − r′|
+Exc[n]−

∫
drn(r)vxc[n](r)

◮ Kohn-Sham functional is extremal ⇒ differences in Etot can
be approximated by differences in single-particle or “band”
energies:

EMAE ≈
occ∑
i

Ei (M̂1) −
occ∑
i

Ei (M̂2)

Issue to be addressed:
How are the band energies affected by the spin-orbit coupling?
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Change of band energy upon inclusion of SOC

◮ SOC-perturbed Hamiltonian:

H = H0 + HSOC = H0 + ξ(r)σ · L

◮ Lowest-order non-vanishing correction to the ground state is
the second-order term:

δE (2) =
∑
j 6=0

|〈ψ0|HSOC |ψj〉|
2

E0 − Ej

However:
There may be contributions to the MAE which cannot be
described within perturbation theory (e.g., if SOC is large or if
degenerate states are important).
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If the perturbation theory cannot be used. . .

◮ Inspiration:

For free atoms, SOC splits the originally degenerate states by

∼ mℓ λ cos θ ,

mℓ is the (orbital) magnetic quantum number,
λ is the SOC scaling factor,
θ is the angle between M̂ and the spin quantization axis.

◮ If the degenerate states are near the Fermi level, the
SOC-induced splitting may push some levels above EF ,
lowering thus the energy [Daalderop et al. (1990,1991,1994), Wang

et al. (1993), Ravindran et al. (2001)].
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Contributions due to degenerate states: Important?

Gimbert & Calmels PRB (2012)

◮ For extended systems, the
degeneracy is limited only to a
small part of the Brillouin zone,
hence its influence on the MAE is
limited.
[Lessard et al. (1997), Gimbert & Calmels

(2012)]
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Contributions due to degenerate states: Important?

Gimbert & Calmels PRB (2012)

◮ For extended systems, the
degeneracy is limited only to a
small part of the Brillouin zone,
hence its influence on the MAE is
limited.
[Lessard et al. (1997), Gimbert & Calmels

(2012)]

◮ What if the k-dependence is
suppressed (as in the case of
adatoms)?

Let us have a look. . .
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Calculate MAE for adatoms

Fe, Co, and Ni adatoms
on Au(111) surface

◮ Fully relativistic Green’s-function KKR formalism,
solving the Dirac equation
[Ebert, Ködderitzsch and Minár RPP (2011)]

◮ MAE evaluated via the torque

◮ Definition: EMAE ≡ E (x) − E (z)

EMAE > 0 ⇔ easy axis is normal to the surface

◮ Plain LDA, potential is subject to the ASA

◮ Adatoms geometry taken from vasp calculations
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Results for EMAE and magnetic moments

EMAE µ
(z)
spin µ

(z)
orb µ

(x)
orb

(meV) (µB) (µB) (µB)

Fe adatom 4.07 3.40 0.536 0.062
Co adatom 4.42 2.13 0.218 0.206
Ni adatom -1.63 0.67 0.063 0.158

Numbers may be interesting but they are not our focus.

Besides, the particular values could be affected by approximations
we have made.
See, e.g., Khan et al. PRB 94 144436 (2016) to learn more.
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DOS for Fe, Co and Ni adatoms on Au(111)
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Magnetization perpendicular to the surface M‖z

(but it does not matter at this scale).

Let us focus on for the minority-spin states, where the most
interesting stuff happens.

Šipr et al. PRB 93, 174409 (2016)
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What to do

Plan:
Have a look at the spin-polarized orbitally-resolved DOS and
monitor how it changes upon rotation of the magnetization.

Problem:
That’s easier said than done.
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Spin-resolved and m-resolved DOS for M ∦ ẑ

The way the DOS components nℓm are defined depends on the
reference frame.

Spherical harmonics Yℓm can be defined in a global reference frame
(fixed to the crystal lattice) or in a local reference frame chosen so
that the z (loc) axis is parallel to M .

n
(glo)
ℓm

(E ) = −
1

π
ℑ 〈Y

(glo)
ℓm

|G (E ) |Y
(glo)
ℓm

〉

n
(loc)
ℓm (E ) = −

1

π
ℑ 〈Y

(loc)
ℓm |G (E ) |Y

(loc)
ℓm 〉

If M ∦ ẑ , projecting the DOS in a global reference frame
mixes the spin components because the spin quantization axis is no
longer parallel to M .
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Spin-resolved and m-resolved DOS for Co adatom
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Spin-resolved and m-resolved DOS for Co adatom
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Spin-resolved and m-resolved DOS for Co adatom
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If M ∦ ẑ , then n
(glo)↑
ℓm (E ) and n

(glo)↓
ℓm (E ) are identical.
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How to maintain spin separation even if M ∦ ẑ

Resolving the spin can be done
(with a good accuracy) once and
for all, in any reference frame
where it can be done.
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◮ Start by resolving the DOS according to the spin in the local
reference frame, where M‖ẑ(loc) (without resolving the DOS
into the m-components).

◮ Assume that the separation of spin components is maintained
through subsequent transformation.

◮ All the further manipulations will be applied to minority-spin
DOS and to majority-spin DOS separately.

14



Transforming nℓm between global and local frames

Transformation between n
(loc)
L and n

(glo)
L generally not possible.

Only the Green’s function G (E ) can be properly transformed.

The transformation of the DOS can be done if G (E ) is diagonal in
the global reference frame.
This is often the case.

Assume further:

n
(glo)
|m| = n

(glo)
−|m|

n
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|m| = n

(loc)
−|m|
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Then a tranformation between n
(loc)
L and n

(glo)
L can be performed.
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Change of DOS upon rotation of magnetization M
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◮ The influence of the SOC is significantly larger for θ=0◦ than
for θ=90◦.

◮ For θ=0◦ the SOC splits the m=±2 peak into two and shifts
their positions in different directions.

Šipr et al. PRB 93, 174409 (2016)
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Dependence of MAE on the position of the Fermi energy
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◮ A sharp peak in the MAE at the energy where there is a peak
for the |m|=2 component.

◮ For the Fe adatom this is overshadowed by the fact that, in
this case, also the |m|=1 states are affected by SOC.
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DOS for inplane magnetization in a local frame
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◮ The θ=90◦ case cannot be directly compared the θ=0◦ case
because the definitions of the m-components differ.

◮ Effect of SOC for θ=90◦ is less than for θ=0◦.

Šipr et al. PRB 93, 174409 (2016)
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Model Hamiltonian

Simple model with only the crystal-field effects taken into account:
Electron feels only the Coulombic field generated by charges
located at the positions of the nuclei.

Restrict to d electrons in an axial field (corresponding to D4d , i.e.,
antiprism symmetry).

H = H(cry) + H(ex) + H(SOC)

◮ H
(cry)
ms,m′s′

is determined by two parameters, resulting in three
spin-degenerate energy levels.

◮ To distinguish between two orientations of the magnetization,
we keep the spin quantization axis fixed (parallel to z) and
vary the Hamiltonian H(ex).

◮ H(SOC) = ξL · S
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Energy levels for model Hamiltonian

Dependence of eigen-energies of the model Hamiltonian on the
SOC strength ξ for two orientations of M .
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Thin dashed lines mark ξ values appropriate for each element.
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Conclusions

◮ The effect of SOC on adatoms that only weakly hybridize with
a substrate consists in splitting atomic-like levels that would
be degenerate otherwise.

◮ The splitting is much larger if the magnetization is oriented
perpendicular to the surface than if it is oriented parallel to the
surface.

◮ The splitting is a combined result of crystal field, exchange
splitting and spin-orbit coupling.

◮ If the originally degenerate level is close to the Fermi level,
one of the peaks can be pushed above it, decreasing thereby
the energy of the system.

◮ This results in a significant contribution to the
magnetocrystalline anisotropy of adatoms.
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