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Outline

Introducing XANES technique

Spectra of minerals with pure BO3 or BO4 coordinations

Minerals with boron in both BO3 and BO4 units

Search for markers of BO3 and BO4 coordinations in XANES
spectra

Explore influence of technical parameters (scattering potential,
core hole, size of cluster)

Inspect prospective use of B K edge XANES in quantitative studies
of structure of glasses
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X-ray absorption spectroscopy
in a nutshell
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X-ray absorption spectroscopy

x-rays are absorbed in the sample via a photoelectron effect

more detection techniques are possible
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Taxonomy

Low photoelectron energies (≤ 50 eV) → XANES
(X-ray Absorption Near Edge Structure)

High photoelectron energies (100–1000 eV) → EXAFS
(Extended X-ray Absorption Fine Structure)
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Local probe

Offers a view from one particular site (chemically selective)

Outgoing photoelectron is scattered by the neighbors

Constructive/destructive interference depending on interatomic
distance
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EXAFS

Several approximations possible in the EXAFS region

Structural information can be “straightforwardly” extracted

EXAFS oscillations are sometimes too faint to measure
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XANES

Physics more complicated

Some structural information is there but difficult to extract

“Fingerprinting” may be dangerous (no unique correspondence
between structural elements and spectral features)
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Theoretical framework

Spectra calculated in a real space (finite clusters of 100-250
atoms)

Full multiple scattering included

True crystal geometry taken from literature, all atoms at correct
positions (no simplification of the structure)

Scattering potentials mostly non-self-consistent (Mattheiss
prescription) [checked that self-consistent potentials yield similar
results]

Core hole treated statically (final state rule, “relaxed and screened”
model)
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Minerals with only one boron site
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Minerals with only BO3 units
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Minerals with only BO4 units
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Minerals with only BO4 units

0 5 10 15 20
energy [eV]

B
K

ed
ge

X
A

N
E

S
[a

rb
.u

ni
ts

]

theory
experiment

BO4

danburite

B

datolite

sinhalite

1.462

1.451

1.481

1.496

Experiment: Main peak with a shoulder

Theory: Single peak

– p.12/34



Basic typology
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Using various scattering potentials
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Core hole effect at the pre-edge
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Sinhalite does not quite follow the herd
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Cluster size effect — BO3 units
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Spectra for clusters of 4 atoms and of 250 atoms are very similar

Fine structure between the pre-peak and the main peak is due to
medium- and long-range order
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Cluster size effect — BO4 units
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Pre-peak and shoulder for BO4 units
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Pre-peak and shoulder for BO4 units
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Pre-peak and shoulder for BO4 units
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BPO4 is peculiar

(and not useful)
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Minerals with borons
in both BO3 and BO4 units
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Minerals with both BO3 and BO4

name formula BO3 BO4

boracite Mg3ClB7O13 1 6
borax Na2B4O5 (OH)

4
· 8 (H2O) 1 1

colemanite CaB3O4 (OH)
3
· H2O 1 2

howlite Ca2SiB5O9 (OH)
5

1 4
kernite Na2B4O6 (OH)

2
· 3 (H2O) 2 2

kurnakovite MgB3O3 (OH)
5
· 5 (H2O) 1 2

meyerhofferite Ca2B6O6 (OH)
10

· 2 (H2O) 1 2
probertite NaCaB5O7 (OH)

4
· 3 (H2O) 2 3

tincalconite Na2B4O5 (OH)
4
· 3 (H2O) 1 1

ulexite NaCaB5O6 (OH)
6
· 5 (H2O) 2 3

Spectra generated at inequivalent sites of the same system are
aligned one to another by the theory
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Spectra of borons in BO3 units
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Spectra of borons in BO4 units
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Spectra of borons in BO4 units
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Markers of BO3 and BO4
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Short-range order is dominant
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Trying to make
quantitative estimates
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Variations in peak areas (BO3)

10 15 20 25
energy [eV]

2

4

6

8

B
K

ed
ge

X
A

N
E

S
[M

b]

Sites with BO3 coordination

Measuring peak area over a
10 eV range

For each peak, find deviation
of its area from the average

For 67% percents of peaks,
their areas deviate from the
average by less than 4%

Maximum deviation from the
average is about 12%

Choice of scattering potential
and other “technical” parame-
ters does not matter
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Variations in peak areas BO4
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Quantifying ratio of BO3 and BO4
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Widths of main peaks — BO3 sites
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Widths of main peaks — BO4 sites
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Peak widths and spread of distances
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Even for spectra at BO4 sites, there are significant deviations from
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Exceptionally large spread of B–O distances yields exceptionally
broad peak
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The end is getting near. . .
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Summary

B K edge XANES of sites in BO3 or BO4 coordinations differ
essentially

The difference between XANES at BO3 or BO4 sites stems from
the short-range order

The pre-peak in spectra of BO3 sites is closely related to the core
hole (hence not so useful for structural studies)

BPO4 crystal is not a good model for structural studies of glasses

Areas of main peaks depend only on the number of nearest
oxygens — can be used for quantifying ratio of borons in BO3 or
BO4 units

Width of main peak at BO4 site is related to the spread of B–O
distances (with a significant statistical noise for typical situations)
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