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Outline

◮ MAE: What is it about?

◮ Scaling of MAE with SOC: case of adatoms

◮ SOC-induced splitting of DOS as a marker of MAE

◮ Message to the mankind
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Magnetic Anisotropy Energy (MAE)

◮ Difference between total energies for two orientations of the
magnetization M̂ with respect to the crystal lattice:

EMAE = E (M̂1) − E (M̂2)
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Magnetic Anisotropy Energy (MAE)

◮ Difference between total energies for two orientations of the
magnetization M̂ with respect to the crystal lattice:

EMAE = E (M̂1) − E (M̂2)

◮ Magnetocrystalline contribution to MAE is due to the spin
orbit coupling (SOC).

◮ What is the specific mechanism that gives rise to the MAE for
a concrete system?

◮ Can we see a signature of MAE in the electronic structure?

◮ The way the MAE scales with the SOC tells us something
about its mechanism.

◮ People still strive to understand how to make MAE as high as
possible [Jesche et al. Nature Comm. (2014), Rau et al.

Science (2014), Khajetoorians & Wiebe Science (2014),
Antropov et al. arXiv (2014)].
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Total energies and single-particle (band) energies

◮ Total energy within the DFT framework:

Etot =

occ∑
i

Ei−
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r − r′|
+Exc[n]−

∫
drn(r)vxc[n](r)

◮ Kohn-Sham functional is extremal ⇒ differences in Etot can
be approximated by differences in single-particle or “band”
energies:

EMAE ≈

occ∑
i

Ei (M̂1) −

occ∑
i

Ei (M̂2)

Issue to be addressed:
How are the band energies affected by the spin-orbit coupling?
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Change of band energy upon inclusion of SOC

◮ SOC-perturbed Hamiltonian (SOC is scaled by λ):

H = H0 + HSOC = H0 + λ ξ(r)σ · L

◮ Lowest-order non-vanishing correction to the ground state is
the second-order term:

δE (2) =
∑
j 6=0

|〈ψ0|HSOC |ψj〉|
2

E0 − Ej

◮ δE (2) scales as λ2 ⇒ MAE scales with SOC quadratically.
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Change of band energy upon inclusion of SOC

◮ SOC-perturbed Hamiltonian (SOC is scaled by λ):

H = H0 + HSOC = H0 + λ ξ(r)σ · L

◮ Lowest-order non-vanishing correction to the ground state is
the second-order term:

δE (2) =
∑
j 6=0

|〈ψ0|HSOC |ψj〉|
2

E0 − Ej

◮ δE (2) scales as λ2 ⇒ MAE scales with SOC quadratically.

◮ However: There may be contributions to the MAE which
cannot be described within perturbation theory (e.g., if SOC is
large or if degenerate states are important).

5



If the perturbation theory cannot be used. . .

◮ Inspiration:

For free atoms, SOC splits the originally degenerate states by

∼ mℓ λ cos θ ,

mℓ is the (orbital) magnetic quantum number,
λ is the SOC scaling factor,
θ is the angle between M̂ and the spin quantization axis.

◮ If the degenerate states are near the Fermi level, the
SOC-induced splitting may push some levels above EF ,
lowering thus the energy [Daalderop et al. (1990,1991,1994),
Wang et al. (1993), Ravindran et al. (2001)].

◮ Contributions due this effect could scale linearly with the SOC
strength λ but the situation is more complicated. . . [Lessard et

al. (1997), Gimbert & Calmels (2012)]
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SOC-scaling of contribution due to degenerate states

Gimbert & Calmels PRB (2012)

◮ For extended systems, the
degeneracy is limited only to a
small part of the Brillouin zone,
hence it does not affect the overall
quadratic scaling of the MAE with
the SOC.
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SOC-scaling of contribution due to degenerate states

Gimbert & Calmels PRB (2012)

◮ For extended systems, the
degeneracy is limited only to a
small part of the Brillouin zone,
hence it does not affect the overall
quadratic scaling of the MAE with
the SOC.

◮ What if the k-dependence is
suppressed (as in the case of
adatoms)?

Let us have a look. . .
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Calculate MAE for adatoms

Fe, Co, and Ni adatoms
on Au(111) surface

◮ Fully relativistic Green’s-function KKR formalism [Ebert,

Ködderitzsch and Minár RPP (2011)]

◮ MAE evaluated via the torque
◮ Definition: EMAE ≡ E

(x) − E
(z)

EMAE > 0 ⇔ easy axis is normal to the surface

◮ Scaling of the SOC done via identifying the SOC-related term by

means of an approximate Dirac equation [Ebert et al. PRB 53, 7721

(1996) extending the scheme of Koelling & Harmon (1977) and

MacLarren & Victora (1994)]
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When things work: Free-standing monolayers
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MAE as function of SOC: Fe adatom
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Fits sought within the range λ=0.8–1.2, i.e., for realistic SOC values.
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MAE as function of SOC: Fe adatom
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SOC-scaling of MAE: verdict for adatoms

For 3d adatoms on Au(111), the MAE does not scale with the
SOC quadratically (in the range of realistic SOC values).

Rather, this scaling is quasi-linear.

⇒ For realistic SOC values, we are in the regime where the MAE
cannot be described by a perturbation theory.
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DOS for Fe adatom
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Effect of SOC on mℓ-resolved DOS: Fe adatom
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Effect of SOC on mℓ-resolved DOS: Fe adatom
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Effect of SOC on mℓ-resolved DOS: Co adatom
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Effect of SOC on mℓ-resolved DOS: Co adatom
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Effect of SOC on mℓ-resolved DOS: Ni adatom
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Effect of SOC on mℓ-resolved DOS: Ni adatom
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Conclusions

◮ For adatoms, if there is a degeneracy between states of
different mℓ, it is not restricted only to a small region of the
k-space and hence it affects the DOS.

◮ Because of this, a significant contribution to the MAE appears
which cannot be described within the perturbation theory (it
does not scale quadratically with the SOC. . . )

◮ In such a case, the mechanism behind the (large) MAE is the
pushing of one of the mℓ-resolved DOS components above the
Fermi level.
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Conclusions

◮ For adatoms, if there is a degeneracy between states of
different mℓ, it is not restricted only to a small region of the
k-space and hence it affects the DOS.

◮ Because of this, a significant contribution to the MAE appears
which cannot be described within the perturbation theory (it
does not scale quadratically with the SOC. . . )

◮ In such a case, the mechanism behind the (large) MAE is the
pushing of one of the mℓ-resolved DOS components above the
Fermi level.

Thank you!
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