Magnetocrystalline anisotropy of adatoms: How to make it big?

O. Šipr ${ }^{1} \quad$ S. Mankovsky ${ }^{2}$ S. Bornemann² J. Vackář ${ }^{1}$ H. Ebert ${ }^{2}$ J. Minár ${ }^{2,3}$
${ }^{1}$ Institute of Physics AS CR, Prague http://www.fzu.cz/~sipr
${ }^{2}$ Department Chemie, Ludwig-Maximilians-Universität München
${ }^{3}$ New Technologies Research Center, University of West Bohemia, Pilsen

26. August 2014 / Condensed Matter in Paris 2014

Outline

- MAE: What is it about?
- Scaling of MAE with SOC: case of adatoms
- SOC-induced splitting of DOS as a marker of MAE
- Message to the mankind

Magnetic Anisotropy Energy (MAE)

- Difference between total energies for two orientations of the magnetization $\hat{\mathbf{M}}$ with respect to the crystal lattice:

$$
E_{\mathrm{MAE}}=E\left(\hat{\mathbf{M}}_{1}\right)-E\left(\hat{\mathbf{M}}_{2}\right)
$$

Magnetic Anisotropy Energy (MAE)

- Difference between total energies for two orientations of the magnetization $\hat{\mathbf{M}}$ with respect to the crystal lattice:

$$
E_{\mathrm{MAE}}=E\left(\hat{\mathbf{M}}_{1}\right)-E\left(\hat{\mathbf{M}}_{2}\right)
$$

- Magnetocrystalline contribution to MAE is due to the spin orbit coupling (SOC).

Magnetic Anisotropy Energy (MAE)

- Difference between total energies for two orientations of the magnetization $\hat{\mathrm{M}}$ with respect to the crystal lattice:

$$
E_{\mathrm{MAE}}=E\left(\hat{\mathbf{M}}_{1}\right)-E\left(\hat{\mathbf{M}}_{2}\right)
$$

- Magnetocrystalline contribution to MAE is due to the spin orbit coupling (SOC).
- What is the specific mechanism that gives rise to the MAE for a concrete system?
- Can we see a signature of MAE in the electronic structure?
- The way the MAE scales with the SOC tells us something about its mechanism.
- People still strive to understand how to make MAE as high as possible [Jesche et al. Nature Comm. (2014), Rau et al. Science (2014), Khajetoorians \& Wiebe Science (2014), Antropov et al. arXiv (2014)].

Total energies and single-particle (band) energies

- Total energy within the DFT framework:

$$
E_{\mathrm{tot}}=\sum_{i}^{\mathrm{occ}} E_{i}-\frac{1}{2} \int \mathrm{~d} \mathbf{r} \int \mathrm{~d} \mathbf{r}^{\prime} \frac{n(\mathbf{r}) n\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}+E_{\mathrm{xc}}[n]-\int \mathrm{d} \mathbf{r} n(\mathbf{r}) v_{\mathrm{xc}}[n](\mathbf{r})
$$

- Kohn-Sham functional is extremal \Rightarrow differences in $E_{\text {tot }}$ can be approximated by differences in single-particle or "band" energies:

$$
E_{\mathrm{MAE}} \approx \sum_{i}^{\text {occ }} E_{i}\left(\hat{\mathbf{M}}_{1}\right)-\sum_{i}^{\text {occ }} E_{i}\left(\hat{\mathbf{M}}_{2}\right)
$$

Issue to be addressed:
How are the band energies affected by the spin-orbit coupling?

Change of band energy upon inclusion of SOC

- SOC-perturbed Hamiltonian (SOC is scaled by λ):

$$
H=H_{0}+H_{\mathrm{SOC}}=H_{0}+\lambda \xi(r) \sigma \cdot \mathbf{L}
$$

- Lowest-order non-vanishing correction to the ground state is the second-order term:

$$
\delta E^{(2)}=\sum_{j \neq 0} \frac{\left.\left|\left\langle\psi_{0}\right| H_{\mathrm{SOC}}\right| \psi_{j}\right\rangle\left.\right|^{2}}{E_{0}-E_{j}}
$$

- $\delta E^{(2)}$ scales as $\lambda^{2} \Rightarrow$ MAE scales with SOC quadratically.

Change of band energy upon inclusion of SOC

- SOC-perturbed Hamiltonian (SOC is scaled by λ):

$$
H=H_{0}+H_{\text {SOC }}=H_{0}+\lambda \xi(r) \sigma \cdot \mathbf{L}
$$

- Lowest-order non-vanishing correction to the ground state is the second-order term:

$$
\delta E^{(2)}=\sum_{j \neq 0} \frac{\left.\left|\left\langle\psi_{0}\right| H_{\mathrm{SOC}}\right| \psi_{j}\right\rangle\left.\right|^{2}}{E_{0}-E_{j}}
$$

- $\delta E^{(2)}$ scales as $\lambda^{2} \Rightarrow$ MAE scales with SOC quadratically.
- However: There may be contributions to the MAE which cannot be described within perturbation theory (e.g., if SOC is large or if degenerate states are important).

If the perturbation theory cannot be used. . .

- Inspiration:

For free atoms, SOC splits the originally degenerate states by

$$
\sim m_{\ell} \lambda \cos \theta
$$

m_{ℓ} is the (orbital) magnetic quantum number,
λ is the SOC scaling factor,
θ is the angle between $\hat{\mathrm{M}}$ and the spin quantization axis.

- If the degenerate states are near the Fermi level, the SOC-induced splitting may push some levels above E_{F}, lowering thus the energy [Daalderop et al. $(1990,1991,1994)$, Wang et al. (1993), Ravindran et al. (2001)].
- Contributions due this effect could scale linearly with the SOC strength λ but the situation is more complicated. .. [Lessard et al. (1997), Gimbert \& Calmels (2012)]

SOC-scaling of contribution due to degenerate states

Gimbert \& Calmels PRB (2012)

- (.) For extended systems, the degeneracy is limited only to a small part of the Brillouin zone, hence it does not affect the overall quadratic scaling of the MAE with the SOC.

SOC-scaling of contribution due to degenerate states

Gimbert \& Calmels PRB (2012)

- (0) For extended systems, the degeneracy is limited only to a small part of the Brillouin zone, hence it does not affect the overall quadratic scaling of the MAE with the SOC.
- What if the \mathbf{k}-dependence is suppressed (as in the case of adatoms)?

Let us have a look. . .

Calculate MAE for adatoms

Fe, Co, and Ni adatoms on $\mathrm{Au}(111)$ surface

- Fully relativistic Green's-function KKR formalism [Ebert, Ködderitzsch and Minár RPP (2011)]
- MAE evaluated via the torque
- Definition: $E_{\text {MAE }} \equiv E^{(x)}-E^{(z)}$

$$
E_{\mathrm{MAE}}>0 \Leftrightarrow \text { easy axis is normal to the surface }
$$

- Scaling of the SOC done via identifying the SOC-related term by means of an approximate Dirac equation [Ebert et al. PRB 53, 7721 (1996) extending the scheme of Koelling \& Harmon (1977) and MacLarren \& Victora (1994)]

When things work: Free-standing monolayers

MAE as function of SOC: Fe adatom

Fits sought within the range $\lambda=0.8-1.2$, i.e., for realistic SOC values.

MAE as function of SOC: Fe adatom

Fits sought within the range $\lambda=0.8-1.2$, i.e., for realistic SOC values.

SOC-scaling of MAE: verdict for adatoms

For $3 d$ adatoms on $A u(111)$, the MAE does not scale with the SOC quadratically (in the range of realistic SOC values).

Rather, this scaling is quasi-linear.
\Rightarrow For realistic SOC values, we are in the regime where the MAE cannot be described by a perturbation theory.

DOS for Fe adatom

DOS for Fe adatom

Effect of SOC on m_{ℓ}-resolved DOS: Fe adatom

Fe adatom on $\mathrm{Au}(111)$

Effect of SOC on m_{ℓ}-resolved DOS: Fe adatom

Fe adatom
on $\mathrm{Au}(111)$
MAE as function
of the top of the valence band

Effect of SOC on m_{ℓ}-resolved DOS: Co adatom

Effect of SOC on $m_{\ell^{-}}$-resolved DOS: Co adatom

Co adatom
on $\mathrm{Au}(111)$
MAE as function
of the top of the valence band

Effect of SOC on m_{ℓ}-resolved DOS: Ni adatom

Effect of SOC on m_{ℓ}-resolved DOS: Ni adatom

Ni adatom
on $\mathrm{Au}(111)$
MAE as function
of the top of the valence band

Conclusions

- For adatoms, if there is a degeneracy between states of different m_{ℓ}, it is not restricted only to a small region of the \mathbf{k}-space and hence it affects the DOS.
- Because of this, a significant contribution to the MAE appears which cannot be described within the perturbation theory (it does not scale quadratically with the SOC...)
- In such a case, the mechanism behind the (large) MAE is the pushing of one of the m_{ℓ}-resolved DOS components above the Fermi level.

Conclusions

- For adatoms, if there is a degeneracy between states of different m_{ℓ}, it is not restricted only to a small region of the \mathbf{k}-space and hence it affects the DOS.
- Because of this, a significant contribution to the MAE appears which cannot be described within the perturbation theory (it does not scale quadratically with the SOC...)
- In such a case, the mechanism behind the (large) MAE is the pushing of one of the m_{ℓ}-resolved DOS components above the Fermi level.

Thank you!

