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Outline

» MAE: What is it about?
» Scaling of MAE with SOC: case of adatoms
» SOC-induced splitting of DOS as a marker of MAE

> Message to the mankind
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Magnetic Anisotropy Energy (MAE)

» Difference between total energies for two orientations of the
magnetization M with respect to the crystal lattice:

Evae = E(M;) — E(My)
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Magnetic Anisotropy Energy (MAE)

» Difference between total energies for two orientations of the
magnetization M with respect to the crystal lattice:

Evae = E(M;) — E(My)

» Magnetocrystalline contribution to MAE is due to the spin
orbit coupling (SOC).

» What is the specific mechanism that gives rise to the MAE for
a concrete system?

» Can we see a signature of MAE in the electronic structure?

» The way the MAE scales with the SOC tells us something
about its mechanism.
> People still strive to understand how to make MAE as high as
possible [Jesche et al. Nature Comm. (2014), Rau et al.
Science (2014), Khajetoorians & Wiebe Science (2014),
Antropov et al. arXiv (2014)].
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Total energies and single-particle (band) energies

» Total energy within the DFT framework:

occ

= 36 5 [ / ¢! +Exc[n1 drn(r)eln(r)

» Kohn-Sham functional is extremal = differences in Eit can
be approximated by differences in single-particle or “band”
energies:

occ occ

Evae =~ ZEi(Ml) — ZEi(M2)

Issue to be addressed:
How are the band energies affected by the spin-orbit coupling?

<
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Change of band energy upon inclusion of SOC
» SOC-perturbed Hamiltonian (SOC is scaled by \):

H = Hy + Hsoc = Ho + A¢(r)o - L

» Lowest-order non-vanishing correction to the ground state is
the second-order term:

Hsoc [v))[?
SE@ (0] Hsoc |9

» §E®@ scales as A2 = MAE scales with SOC quadratically.
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Change of band energy upon inclusion of SOC
» SOC-perturbed Hamiltonian (SOC is scaled by \):

H = Ho + Hsoc = Ho + M\¢(r)o

» Lowest-order non-vanishing correction to the ground state is
the second-order term:

2
SE® Z (0] Hsoc [¥))]
Eo — E;
» §E®@ scales as A2 = MAE scales with SOC quadratically.
» However: There may be contributions to the MAE which

cannot be described within perturbation theory (e.g., if SOC is
large or if degenerate states are important).
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If the perturbation theory cannot be used. ..

» Inspiration:
For free atoms, SOC splits the originally degenerate states by

~ my X\ cosf ,

my is the (orbital) magnetic quantum number,

A is the SOC scaling fac:cor,
6 is the angle between M and the spin quantization axis.

> If the degenerate states are near the Fermi level, the
SOC-induced splitting may push some levels above Ef,
lowering thus the energy [Daalderop et al. (1990,1991,1994),
Wang et al. (1993), Ravindran et al. (2001)].

» Contributions due this effect could scale linearly with the SOC
strength X but the situation is more complicated. . . [Lessard et
al. (1997), Gimbert & Calmels (2012)]

>
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SOC-scaling of contribution due to degenerate states
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>

~  For extended systems, the
degeneracy is limited only to a
small part of the Brillouin zone,
hence it does not affect the overall
quadratic scaling of the MAE with
the SOC.



SOC-scaling of contribution due to degenerate states
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>

~  For extended systems, the
degeneracy is limited only to a
small part of the Brillouin zone,
hence it does not affect the overall
quadratic scaling of the MAE with
the SOC.

What if the k-dependence is
suppressed (as in the case of
adatoms)?

Let us have a look. ..



Calculate MAE for adatoms

Fe, Co, and Ni adatoms
on Au(111) surface

» Fully relativistic Green's-function KKR formalism [Ebert,
Kddderitzsch and Minar RPP (2011)]

» MAE evaluated via the torque
» Definition: Eyag = EX — E()
Emae > 0 < easy axis is normal to the surface

» Scaling of the SOC done via identifying the SOC-related term by
means of an approximate Dirac equation [Ebert et al. PRB 53, 7721
(1996) extending the scheme of Koelling & Harmon (1977) and
MacLarren & Victora (1994)]

Fz0



When things work: Free-standing monolayers
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MAE as function of SOC: Fe adatom
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MAE as function of SOC: Fe adatom
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SOC-scaling of MAE: verdict for adatoms

Fz0

For 3d adatoms on Au(111), the MAE does not scale with the
SOC quadratically (in the range of realistic SOC values).

Rather, this scaling is quasi-linear.

= For realistic SOC values, we are in the regime where the MAE
cannot be described by a perturbation theory.
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DOS for Fe adatom
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DOS for Fe adatom
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Effect of SOC on my-resolved DOS: Fe adatom
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Effect of SOC on my-resolved DOS: Fe adatom
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Effect of SOC on my-resolved DOS: Co adatom
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Effect of SOC on my-resolved DOS: Co adatom
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Effect of SOC on my-resolved DOS: Ni adatom
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Effect of SOC on my-resolved DOS: Ni adatom
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Conclusions

» For adatoms, if there is a degeneracy between states of
different my, it is not restricted only to a small region of the
k-space and hence it affects the DOS.

» Because of this, a significant contribution to the MAE appears
which cannot be described within the perturbation theory (it
does not scale quadratically with the SOC...)

» In such a case, the mechanism behind the (large) MAE is the
pushing of one of the my-resolved DOS components above the
Fermi level.
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Conclusions

» For adatoms, if there is a degeneracy between states of
different my, it is not restricted only to a small region of the
k-space and hence it affects the DOS.

» Because of this, a significant contribution to the MAE appears
which cannot be described within the perturbation theory (it
does not scale quadratically with the SOC...)

» In such a case, the mechanism behind the (large) MAE is the
pushing of one of the my-resolved DOS components above the
Fermi level.

Thank you!
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