Ab-initio calculations of the stiffness constants D and A_{ex} for permalloy doped with V, Gd, and Pt

Which factors really matter?

O. Šipr¹ S. Mankovsky² H. Ebert²

¹Institute of Physics ASCR, Praha http://www.fzu.cz/~sipr

²Department Chemie, Ludwig-Maximilians-Universität, München

Regensburg, DPG conference, 5. April 2019

Outline

- Why to care? What to look for? How to do it?
- Trends of D and A_{ex} stiffness with concentration.
 Comparison with experiment

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

2

- Role of the polarizability of the dopant.
- Size of the regio that really matters: Simple *ansatz* for spin wave stiffness *D*.

Conclusions.

Doped permalloy

Doping:

promising way to modify the properties of (not only) magnetic materials.

Permalloy (Py): Fe₁₉Ni₈₁

fcc structure

- high magnetic permeability
- high and low electrical conductivity in the majority and minority spin channels

Why to care about the stiffness?

Micromagnetics:

Continuum approximation, the angle of the magnetization changes slowly over atomic distances, spin vectors are replaced by a continuous function $\mathbf{m}(\mathbf{r})$.

$$E[\mathbf{m}] = \int_{V} \mathrm{d}\mathbf{r} \left\{ A_{\mathsf{ex}} \left[\left(\frac{\partial \mathbf{m}}{\partial x} \right)^{2} + \left(\frac{\partial \mathbf{m}}{\partial y} \right)^{2} + \left(\frac{\partial \mathbf{m}}{\partial z} \right)^{2} \right] + \ldots \right\}$$

Exchange stiffness A_{ex} , spin wave stiffness D:

$$A_{\rm ex} = \frac{D M_s}{2g\mu_B}$$

 M_s is saturation magnetization, g is Landé factor ($g \approx 2$ for metals).

What to look for

Understand better the mechanism how different dopants affect the spin wave and exchange stiffness.

Earlier suggestions: Polarizability of the dopant will be an important factor. This is *plausible* but is it also *correct*?

Look for a simple model that would enable a quick estimate how the stiffness will change upon a doping.

Spin stiffness D from exchange coupling constants (1)

By relying on the Heisenberg Hamiltonian

$$H = -\sum_{ij} J_{ij} \, \hat{\mathbf{e}}_i \cdot \hat{\mathbf{e}}_j \quad ,$$

one arrives (for isotropic systems) to

$$D = \sum_{j} \frac{2\mu_B}{3M} J_{0j} R_{0j}^2$$

 R_{0j} is the interatomic distance.

Convergence issues solved by introducing the damping parameter η :

$$D = \lim_{\eta \to 0} D(\eta) = \lim_{\eta \to 0} \sum_{j} \frac{2\mu_B}{3M} J_{0j} R_{0j}^2 \exp\left(-\eta \frac{R_{0j}}{a_0}\right)$$

 a_0 is lattice parameter.

[Pajda et al. PRB 64, 174402 (2001)]

Spin stiffness D from exchange coupling constants (2)

For alloys:

Atomic types labeled by α , lattice sites labeled by *j*.

Concentration for a type α is c_{α} and magnetic moment μ_{α} .

Pairwise exchange coupling constant $J_{0j}^{(\alpha\beta)}$ for atom of type α at the origin and atom of type β at the site *j*.

$$D = \lim_{\eta \to 0} D(\eta) ,$$

$$D(\eta) = \sum_{\alpha} c_{\alpha} D_{\alpha}(\eta) ,$$

$$D_{\alpha}(\eta) = \sum_{j} \sum_{\beta} c_{\beta} \frac{2\mu_{B}}{3\sqrt{|\mu_{\alpha}||\mu_{\beta}|}} J_{0j}^{(\alpha\beta)} R_{0j}^{2} e^{-\eta \frac{R_{0j}}{R_{01}}} .$$

Role of magnetic moments of the dopants

$$D = \lim_{\eta \to 0} \sum_{\alpha} c_{\alpha} \left[\sum_{j} \sum_{\beta} c_{\beta} \frac{2\mu_{B}}{3\sqrt{|\mu_{\alpha}||\mu_{\beta}|}} J_{0j}^{(\alpha\beta)} R_{0j}^{2} e^{-\eta \frac{R_{0j}}{R_{01}}} \right] .$$

Moments on V and Pt atoms are induced. When tilted, they follow magnetization direction of their neighbors. Their participation can be *questioned*. [Finite temperature: Polesya *et al.* PRB **82**, 214409 (2010)].

Our default: V and Pt moments support the orientations of moments at Fe and Ni but do not contribute to D directly.

The moments of Gd atoms are intrinsic: treat them in the same way as moments of Fe or Ni atoms.

Computational method

Korringa-Kohn-Rostoker (KKR) Green function: SPRKKR.

Scalar-relativistic, atomic sphere approximation (ASA), coherent potential approximation (CPA).

Gd atoms: electronic structure via the open core formalism (f electrons treated as tightly bound core electrons, their number kept fixed during the self-consistency loop).

Spoiler: it does not really matter...

 $J_{0j}^{(\alpha\beta)}$ constants via the prescription of Liechtenstein *et al.*

Taking the limit $\lim_{\eta\to 0} D(\eta)$ delicate but managable.

Spin wave stiffness and exchange stiffness

For spin wave stiffness *D* trends for V and Gd dopants are similar.

For exchange stiffness A_{ex} trend for V and Gd dopants differ because the magnetization differs:

 $A_{\rm ex} = DM_s/(2g\mu_B)$

Moments of V are small and antiparallel to moments of the host, moment of Gd are large and parallel to moments of the host.

Exchange stiffness: theory and experiment

Trends of A_{ex} with dopant concentration reproduced.

Differences in absolute values:

Partly due to the temperature effect.

Partly due to problems in describing magnetism Ni via J_{ij} 's. (Similar difference found earlier for undoped Py, larger difference found for Ni.)

Role of the polarizability of the dopant

Full lines: $J_{ij}^{(\alpha\beta)}$'s for V or Pt in the same way as for Fe and Ni.

Dashed lines: $J_{ij}^{(\alpha\beta)}$'s for V or Pt completely ignored.

Circles: exchange field *B* for the dopant atoms suppressed.

Polarizability of the dopants does not have a significant influence on the spin wave stiffness D of doped permalloy.

Size of the region that *really* matters (1)

Recall the basic equation for D:

$$D = \sum_{j} \frac{2\mu_B}{3M} J_{0j} R_{0j}^2$$

How far do we have to go with the sum over the sites \sum_{i} ?

What is the largest inter-atomic distance R_{0j} that has to be taken into account?

٠

Size of the region that *really* matters (2)

$$D = \sum_{j} \frac{2\mu_B}{3M} J_{0j} R_{0j}^2$$

Dependence of Don the maximum distance $R_{0j}^{(max)}$ included in the sum over sites.

Significant variations of the spin wave stiffness constant D only within few nearest shells.

Afterwards, D just oscillates around the mean value.

Including large distances R_{0j} is thus necessary just for technical reasons.

Stiffness and nearest-neighbors exchange coupling (1)

Define *effective coupling* originating *from the nearest neighbors* only:

$$J_1 = \sum_lpha c_lpha \, 12 \, \sum_eta c_eta J_{01}^{(lphaeta)}$$

Linear fit: $D = 109.4 J_1 - 118$

Universal fit, for various concentrations and different dopant atoms.

Stiffness and nearest-neighbors exchange coupling (2)

For each dopant concentration: (i) evaluate effective nearest-neighbor coupling J₁, (ii) from this J₁ evaluate D via the fit

$$D = 109.4 J_1 - 118$$
.

Trend of the spin wave stiffness D with the dopant concentration is, to a decisive degree, determined just by the coupling among the nearest neighbors.

Conclusion

- Calculated exchange stiffness constant A_{ex} decreases with increasing dopant concentration, in agreement with experiment.
 - The influence of V-doping and of Gd-doping on the spin wave stiffness D is very similar. The difference in the trends for the exchange stiffness A_{ex} comes from the differences in the magnetization M_s.
- Polarizability of the dopant is not an important factor for the spin wave stiffness D (unlike what was conjectured before).
- The trends of the spin wave stiffness D when the dopant concentration is varied can be discussed by considering the influence of the atoms in the first coordination shell.

Conclusion

 Calculated exchange stiffness constant A_{ex} decreases with increasing dopant concentration, in agreement with experiment.

- The influence of V-doping and of Gd-doping on the spin wave stiffness D is very similar. The difference in the trends for the exchange stiffness A_{ex} comes from the differences in the magnetization M_s.
- Polarizability of the dopant is not an important factor for the spin wave stiffness D (unlike what was conjectured before).
- The trends of the spin wave stiffness D when the dopant concentration is varied can be discussed by considering the influence of the atoms in the first coordination shell.

Exchange coupling constants

GGA and open-core results for Gd dopants

	open-core potential		GGA potential	
conc.	Ms	D	Ms	D
(%)	$(\mu_B/cell)$	(meV Ų)	$(\mu_B/cell)$	(meV Ų)
1.0	1.067	531	1.066	532
5.0	1.244	381	1.239	387
10.0	1.477	243	1.463	250

Magnetic moments per unit cell M_s and spin waves stiffness constant D for Gd-doped Py obtained by taking the potential from the open-core calculations and from the GGA-based band structure calculations.

Technical details of the calculations

 $62 \times 62 \times 62$ k-points in full BZ.

Angular momentum expansion of the Green function up to $\ell_{\text{max}}=3.$

Interatomic distances up to 20.5 a_0 (a_0 is the interatoms distance). Comprises about 136000 atoms.

Numerically reliable $D(\eta)$ values obtained for η from 0.2 to 1.

Extrapolation to $\eta = 0$ using fifth-degree polynomial.

