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Doped permalloy

Doping:
promising way to modify the properties of (not only) magnetic
materials.

Permalloy (Py): Fe19Ni81

◮ fcc structure

◮ high magnetic permeability

◮ high and low electrical conductivity in the majority and
minority spin channels
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Why to care about the stiffness?

Micromagnetics:
Continuum approximation, the angle of the magnetization changes slowly

over atomic distances, spin vectors are replaced by a continuous

function m(r).

E [m] =

∫

V

dr

{

Aex

[

(

∂m
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)2

+

(

∂m

∂y

)2

+
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∂m
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)2
]

+ . . .

}

Exchange stiffness Aex, spin wave stiffness D:

Aex =
D Ms

2gµB

Ms is saturation magnetization, g is Landé factor (g ≈ 2 for metals).
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What to look for

Understand better the mechanism how different dopants affect the
spin wave and exchange stiffness.

Earlier suggestions:
Polarizability of the dopant will be an important factor.
This is plausible but is it also correct?

Look for a simple model that would enable a quick estimate how
the stiffness will change upon a doping.
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Spin stiffness D from exchange coupling constants (1)

By relying on the Heisenberg Hamiltonian

H = −
∑

ij

Jij êi · êj ,

one arrives (for isotropic systems) to

D =
∑

j

2µB

3M
J0j R

2
0j .

R0j is the interatomic distance.

ei ej

Jij

Convergence issues solved by introducing the damping parameter η:

D = lim
η→0

D(η) = lim
η→0

∑

j

2µB

3M
J0j R

2
0j exp

(

−η
R0j

a0

)

.

a0 is lattice parameter.
[Pajda et al. PRB 64, 174402 (2001)]
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Spin stiffness D from exchange coupling constants (2)

For alloys:

Atomic types labeled by α, lattice sites labeled by j .

Concentration for a type α is cα and magnetic moment µα.

Pairwise exchange coupling constant J
(αβ)
0j for atom of type α at the

origin and atom of type β at the site j .

D = lim
η→0

D(η) ,

D(η) =
∑

α

cα Dα(η) ,

Dα(η) =
∑

j

∑

β

cβ
2µB

3
√

|µα||µβ |
J
(αβ)
0j R2

0j e
−η

R0j
R01 .
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Role of magnetic moments of the dopants

D = lim
η→0

∑

α

cα







∑

j

∑

β

cβ
2µB

3
√

|µα||µβ |
J
(αβ)
0j

R
2
0j e

−η
R0j
R01






.

Moments on V and Pt atoms are induced. When tilted, they follow
magnetization direction of their neighbors.
Their participation can be questioned.
[Finite temperature: Polesya et al. PRB 82, 214409 (2010)].

Our default: V and Pt moments support the orientations of
moments at Fe and Ni but do not contribute to D directly.

The moments of Gd atoms are intrinsic: treat them in the same
way as moments of Fe or Ni atoms.
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Computational method

Korringa-Kohn-Rostoker (KKR) Green function: sprkkr.

Scalar-relativistic, atomic sphere approximation (ASA), coherent

potential approximation (CPA).

Gd atoms: electronic structure via the open core formalism
(f electrons treated as tightly bound core electrons, their number
kept fixed during the self-consistency loop).

Spoiler: it does not really matter. . .

J
(αβ)
0j constants via the prescription of Liechtenstein et al.

Taking the limit limη→0 D(η) delicate but managable.
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Spin wave stiffness and exchange stiffness
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For spin wave stiffness D

trends for V and Gd dopants

are similar.

For exchange stiffness Aex

trend for V and Gd dopants
differ because the
magnetization differs:

Aex = DMs/(2gµB)

Moments of V are small and

antiparallel to moments of

the host, moment of Gd are

large and parallel to

moments of the host.
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Exchange stiffness: theory and experiment
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Trends of Aex with dopant
concentration reproduced.

Differences in absolute

values:

Partly due to the

temperature effect.

Partly due to problems in
describing magnetism Ni via
Jij ’s.

(Similar difference found

earlier for undoped Py, larger

difference found for Ni.)
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Role of the polarizability of the dopant
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Full lines: J
(αβ)
ij ’s for V or

Pt in the same way as for

Fe and Ni.

Dashed lines: J
(αβ)
ij ’s for

V or Pt completely

ignored.

Circles: exchange field B

for the dopant atoms

suppressed.

Polarizability of the dopants does not have a significant influence
on the spin wave stiffness D of doped permalloy.
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Size of the region that really matters (1)

Recall the basic equation for D:

D =
∑

j

2µB

3M
J0j R

2
0j .

ei ej

Jij

How far do we have to go with the sum over the sites
∑

j ?

What is the largest inter-atomic distance R0j that has to be taken
into account?
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Size of the region that really matters (2)
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J0j R
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Dependence of D

on the maximum

distance R
(max)
0j

included in the

sum over sites.

Significant variations of the spin wave stiffness constant D only
within few nearest shells.
Afterwards, D just oscillates around the mean value.

Including large distances R0j is thus necessary just for technical reasons.
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Stiffness and nearest-neighbors exchange coupling (1)
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Define effective coupling

originating from the

nearest neighbors only:

J1 =
∑

α

cα 12
∑

β

cβJ
(αβ)
01

Linear fit: D = 109.4 J1 − 118

Universal fit, for various concentrations and different dopant atoms.

15



Stiffness and nearest-neighbors exchange coupling (2)
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For each dopant
concentration:
(i) evaluate effective
nearest-neighbor coupling J1,

(ii) from this J1 evaluate D

via the fit

D = 109.4 J1 − 118 .

Trend of the spin wave stiffness D with the dopant concentration
is, to a decisive degree, determined just by the coupling among the
nearest neighbors.
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Conclusion

◮ Calculated exchange stiffness constant Aex

decreases with increasing dopant concentration,
in agreement with experiment.
◮ The influence of V-doping and of Gd-doping on

the spin wave stiffness D is very similar. The
difference in the trends for the exchange
stiffness Aex comes from the differences in the
magnetization Ms .

◮ Polarizability of the dopant is not an important
factor for the spin wave stiffness D (unlike what

was conjectured before).

◮ The trends of the spin wave stiffness D when the
dopant concentration is varied can be discussed
by considering the influence of the atoms in the
first coordination shell.

17



Conclusion

◮ Calculated exchange stiffness constant Aex

decreases with increasing dopant concentration,
in agreement with experiment.
◮ The influence of V-doping and of Gd-doping on

the spin wave stiffness D is very similar. The
difference in the trends for the exchange
stiffness Aex comes from the differences in the
magnetization Ms .

◮ Polarizability of the dopant is not an important
factor for the spin wave stiffness D (unlike what

was conjectured before).

◮ The trends of the spin wave stiffness D when the
dopant concentration is varied can be discussed
by considering the influence of the atoms in the
first coordination shell.

17



18



19



Exchange coupling constants
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GGA and open-core results for Gd dopants

open-core potential GGA potential
conc. Ms D Ms D

(%) (µB/cell) (meV Å2) (µB/cell) (meV Å2)

1.0 1.067 531 1.066 532
5.0 1.244 381 1.239 387
10.0 1.477 243 1.463 250

Magnetic moments per unit cell Ms and spin waves stiffness
constant D for Gd-doped Py obtained by taking the potential from
the open-core calculations and from the GGA-based band structure
calculations.
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Technical details of the calculations

62×62×62 k-points in full BZ.

Angular momentum expansion of the Green function up to
ℓmax = 3.

Interatomic distances up to 20.5 a0 (a0 is the interatoms distance).
Comprises about 136000 atoms.

Numerically reliable D(η) values obtained for η from 0.2 to 1.

Extrapolation to η = 0 using fifth-degree polynomial.
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