Magnetism of free Rh clusters via ab-initio calculations: which intuitive concepts can or cannot be used

O. Šipr¹ S. Mankovsky² H. Ebert² J. Minár^{2,3}

¹Institute of Physics AS CR, Praha http://www.fzu.cz/~sipr

²Department Chemie, Ludwig-Maximilians-Universität, München

³New Technologies Research Centre, University of West Bohemia, Plzeň

Berlin, DGP meeting, 19. March 2015

Outline

- Clusters: what to expect?
- ► 3*d* reference: review of free Fe clusters
- Rh clusters: issues to deal with
- Results: trends and non-trends of magnetism for free Rh clusters
- Executive summary

What can we expect from clusters?

 Clusters mark the transition between atoms, surfaces and bulk systems

Starting point: magnetism of Fe

Starting point: magnetism of Fe

clusters enter here

Magnetic moments of Fe clusters

• $\mu_{
m spin}$ decrease with cluster size in a quasi-oscillatory way.

Theory describes this trend (at least to some extent).

Magnetic profiles for free Fe clusters

 μ_{spin} and μ_{orb} increase when going from the center outwards.

Technical reminder: Relativity decreases the symmetry, therefore atoms belonging to the same shell need not have the same $\mu_{\rm orb}$.

Šipr et al. PRB 2004

Dependence of $\mu_{ m spin}$ on the coordination number

Magnetic moment decreases with the coordination number linearly.

Šipr et al. PRB 2004

7

Main points for magnetism of free 3d clusters

- \blacktriangleright μ_{spin} and μ_{orb} are enhanced at atoms close to the cluster surface.
- $\mu_{\rm spin}$ depends linearly on the coordination number.
 - This is a universal feature of most 3d clusters, both free and supported
 [Šipr et al. 2004, Mavropoulos et al. 2006, Šipr et al. 2007, Bornemann et al. 2012].

What to expect for 4d clusters?

4d electrons are less localized than 3d electrons

$$\begin{split} r_{3d} &= |\langle \psi_{3d} | \, r \, |\psi_{3d} \rangle| \qquad \sim 20\% \text{ of interatomic distance in bulk Co} \\ r_{4d} &= |\langle \psi_{4d} | \, r \, |\psi_{4d} \rangle| \qquad \sim 30\% \text{ of interatomic distance in bulk Rh} \end{split}$$

Spin-orbit coupling (SOC) is stronger for 4d elements than for 3d elements

 $\xi_{
m Co} = 85 \ {
m meV}$ $\xi_{
m Rh} = 204 \ {
m meV}$

Rh clusters: controversial results by experiment

 Stern-Gerlach-type experiment: free Rh clusters have magnetic moments which decrease with cluster size (to zero at 60–100 atoms), in a non-monotonous way [Cox et al. 1994].

- ► X-ray magnetic circular dichroism (XMCD): quasi-free Rh clusters of few tens of atoms in a Xe matrix on Ag(100) are magnetic, with µ_{orb}/µ_{spin} ratio about 40% [Sessi et al. 2010].
- XMCD: Rh clusters of about 220 atoms embedded in a Al₂O₃ matrix are paramagnetic, with μ_{orb}/μ_{spin} ratio less than 2% [Barthem *et al.* 2012].

Rh clusters: controversial results by theory

- Different DFT implementations predict different structures and spin configurations [Beltrán et al. 2013].
- Existence of more competing configurations is typical, sometimes the configurations differ only little in energies but considerably in magnetic moments [Jinlong et al. 1994, Lee 1997, Kumar et al. 2003, Futschek et al. 2005].
- Technical note: Most *ab initio* studies focused on clusters of less than 20 atoms.

Questions to be asked

Situation is messy \Rightarrow let us downgrade the question, to get at least some reliable answers.

Focus not on properties of individual clusters but on common trends prevailing over an ensemble of cluster sizes.

- Is there any systematic relation between local magnetic moments and coordination numbers (as in 3d)?
- If not, is there another common trend to guide our intuition?

Methodology

- Spherical-like Rh clusters of 13–135 atoms, with fcc geometry as if cut from the bulk.
 - Technical note: Results for large Rh clusters are not very sensitive to whether the structural relaxation has been performed or not [Guirado-Lopez *et al.* 2000, Aguilera-Granja *et al.* 2002].
- Fully-relativistic KKR Green's function formalism as implemented in the SPRKKR code [Ebert *et al.* Rep. Prog. Phys. 2011].

Magnetic profiles for free Rh clusters

- Representative results shown (clusters of 19, 38, and 55 atoms).
- No clear trend for enhancement of magnetic moments towards the surface.
- Note the opposite orientation of μ_{spin} and μ_{orb} for the centermost atoms in 19-atoms and 38-atoms clusters.

(Non-)dependence of $\mu_{ m spin}$ on coordination number

Local $\mu_{\rm spin}$ in free Rh clusters as a function of the coordination number for atoms in clusters of 13–135 atoms:

 FZΰ Šipr *et al.* JPCM 2015

Stoner criterion applied locally

<ロ> (四) (四) (三) (三)

16

Can T_z explain the differences in XMCD experiments?

XMCD spin moment sum rule:

$$\int \left(\Delta \mu_{L_3} - 2\Delta \mu_{L_2}\right) dE \sim \frac{\mu_{\rm spin}^{(d)} + 7T_z^{(d)}}{3n_h^{(d)}}$$

Can T_z explain the differences in XMCD experiments?

XMCD spin moment sum rule:

$$\int \left(\Delta \mu_{L_3} - 2\Delta \mu_{L_2}\right) dE \sim \frac{\mu_{\rm spin}^{(d)} + 7 T_z^{(d)}}{3 n_h^{(d)}}$$

The intra-atomic T_z term can be quite large at certain sites but as a whole it is unlikely to affect the interpretation of XMCD experiments based on the sum rules.

Šipr et al. JPCM 2015

Conclusions

Some intuitive concepts that proved to be useful in magnetism of 3d clusters are not applicable to magnetism of 4d clusters.

- No systematic relation between local magnetic moments and coordination numbers.
- There can be large μ_{orb} antiparallel to μ_{spin} for some atoms in some clusters.
- Stoner model describes even local aspect of Rh magnetism quite well.
- *T_z* term cannot be used to explain differences between theory and XMCD experiment (or between different XMCD experiments).

