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O. Šipr1 S. Mankovsky2 H. Ebert2 J. Minár2,3

1Institute of Physics AS CR, Praha http://www.fzu.cz/~sipr

2Department Chemie, Ludwig-Maximilians-Universität, München

3New Technologies Research Centre, University of West Bohemia, Plzeň
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Outline

◮ Clusters: what to expect?

◮ 3d reference: review of free Fe clusters

◮ Rh clusters: issues to deal with

◮ Results: trends and non-trends of magnetism for free Rh
clusters

◮ Executive summary
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What can we expect from clusters?

◮ Clusters mark the transition between atoms, surfaces and bulk
systems
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Starting point: magnetism of Fe

atom surface bulk

µspin=4 µB µspin=2.5–3.0 µB µspin=2.2 µB

µorb =2 µB µorb =0.07–0.12 µB µorb =0.05 µB
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Starting point: magnetism of Fe

atom surface bulk

µspin=4 µB µspin=2.5–3.0 µB µspin=2.2 µB

µorb =2 µB µorb =0.07–0.12 µB µorb =0.05 µB

clusters enter here
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Magnetic moments of Fe clusters
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free Fe clusters

◮ µspin decrease with cluster size in a quasi-oscillatory way.
◮ Theory describes this trend (at least to some extent).
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Magnetic profiles for free Fe clusters

µspin and µorb increase when
going from the center
outwards.

Technical reminder:

Relativity decreases the symmetry,

therefore atoms belonging to the

same shell need not have the

same µorb.

Šipr et al. PRB 2004 0 2 4 6
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Dependence of µspin on the coordination number

Magnetic moment
decreases with the
coordination number
linearly.

Šipr et al. PRB 2004 0 2 4 6 8 10
effective coordination number Neff = N1 + 0.25 N2
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Main points for magnetism of free 3d clusters

◮ µspin and µorb are enhanced at atoms close to the cluster
surface.

◮ µspin depends linearly on the coordination number.

◮ This is a universal feature of most 3d clusters, both free and
supported
[Šipr et al. 2004, Mavropoulos et al. 2006, Šipr et al. 2007,

Bornemann et al. 2012].
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What to expect for 4d clusters?

4d electrons are less localized than 3d electrons

r3d = |〈ψ3d | r |ψ3d 〉| ∼20% of interatomic distance in bulk Co

r4d = |〈ψ4d | r |ψ4d 〉| ∼30% of interatomic distance in bulk Rh

Spin-orbit coupling (SOC) is stronger for 4d elements than for
3d elements

ξCo = 85 meV

ξRh = 204 meV
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Rh clusters: controversial results by experiment

◮ Stern-Gerlach-type experiment: free Rh clusters have magnetic
moments which decrease with cluster size (to zero at 60–100
atoms), in a non-monotonous way [Cox et al. 1994].

◮ X-ray magnetic circular dichroism (XMCD): quasi-free Rh
clusters of few tens of atoms in a Xe matrix on Ag(100) are
magnetic, with µorb/µspin ratio about 40% [Sessi et al. 2010].

◮ XMCD: Rh clusters of about 220 atoms embedded in a Al2O3

matrix are paramagnetic, with µorb/µspin ratio less than 2%
[Barthem et al. 2012].
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Rh clusters: controversial results by theory

◮ Different DFT implementations predict different structures
and spin configurations [Beltrán et al. 2013].

◮ Existence of more competing configurations is typical,
sometimes the configurations differ only little in energies but
considerably in magnetic moments [Jinlong et al. 1994, Lee 1997,

Kumar et al. 2003, Futschek et al. 2005].

◮ Technical note: Most ab initio studies focused on clusters of
less than 20 atoms.
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Questions to be asked

Situation is messy ⇒ let us downgrade the question, to get at least
some reliable answers.

Focus not on properties of individual clusters but on common
trends prevailing over an ensemble of cluster sizes.

◮ Is there any systematic relation between local magnetic
moments and coordination numbers (as in 3d)?

◮ If not, is there another common trend to guide our intuition?
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Methodology

◮ Spherical-like Rh clusters of 13–135 atoms, with fcc geometry
as if cut from the bulk.

◮ Technical note: Results for large Rh clusters are not very
sensitive to whether the structural relaxation has been
performed or not [Guirado-Lopez et al. 2000, Aguilera-Granja et

al. 2002].

◮ Fully-relativistic KKR Green’s function formalism as
implemented in the sprkkr code [Ebert et al. Rep. Prog. Phys.

2011].
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Magnetic profiles for free Rh clusters
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◮ Representative results shown (clusters of 19, 38, and 55
atoms).

◮ No clear trend for enhancement of magnetic moments towards
the surface.

◮ Note the opposite orientation of µspin and µorb for the
centermost atoms in 19-atoms and 38-atoms clusters.
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(Non-)dependence of µspin on coordination number

Local µspin in free Rh clusters as a function of the coordination
number for atoms in clusters of 13–135 atoms:
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Stoner criterion applied locally
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Can Tz explain the differences in XMCD experiments?
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Can Tz explain the differences in XMCD experiments?
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The intra-atomic Tz term can be quite
large at certain sites but as a whole it is
unlikely to affect the interpretation of
XMCD experiments based on the sum
rules.
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Conclusions

Some intuitive concepts that proved to be useful in
magnetism of 3d clusters are not applicable to
magnetism of 4d clusters.

◮ No systematic relation between local magnetic moments and
coordination numbers.

◮ There can be large µorb antiparallel to µspin for some atoms in
some clusters.

◮ Stoner model describes even local aspect of Rh magnetism
quite well.

◮ Tz term cannot be used to explain differences between theory
and XMCD experiment (or between different XMCD
experiments).
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