Electronic, magnetic and spectroscopic properties of free Fe clusters

O. Šipr¹, M. Košuth², J. Minár², S. Polesya² and H. Ebert²

 ¹ Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 53 Prague, Czech Republic
 ² Universität München, Department Chemie, Butenandtstr. 5-13, D-81377 München, Germany

References:

O. Šipr and H. Ebert, Physica Scripta **T115**, 110–112 (2005)

O. Šipr, M. Košuth and H. Ebert, Phys. Rev. B **70**, 174423 (2004) *(13 pages)*

O. Šipr, M. Košuth and H. Ebert, Surf. Sci. **566-568** Part 1, pp. 268–271 (2004)

O. Šipr and H. Ebert, Czech. J. Phys. 53, 55–63 (2003)

Websites:

http://www.fzu.cz/~sipr

http://olymp.phys.chemie.uni-muenchen.de/ak/ebert/index_eng.html

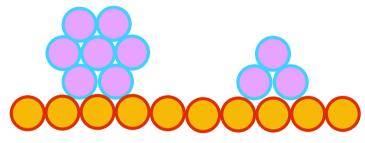
Outline

Introducing clusters, magnetism and cluster magnetism

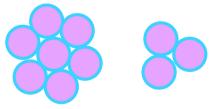
- **Solution** Electronic properties and magnetism of clusters (at T=0)
- Magnetism of clusters and of crystal surfaces
- Exploring magnetism through spectroscopy (XMCD)
- Finite temperature magnetism of clusters

Nomenclature

- Clusters = systems of tens to hundreds of atoms
- Radii from ~6 Å for a 100-atom cluster to ~15 Å for a 1000-atom cluster
- Supported clusters adsorbed on a surface

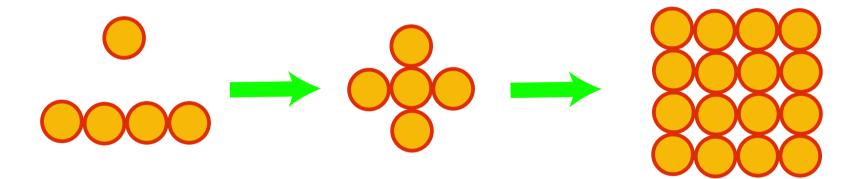


Free clusters — giant molecules, surrounded by vacuum



What can we expect?

Clusters mark the transition between atoms, surfaces and bulk systems



Interesting phenomena (and a lot of fun) can be anticipated

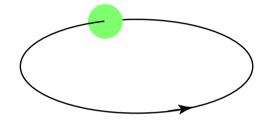
Our main focus will be on their magnetic properties

Where does magnetism come from?

- Classically: Magnetic field is something produced by moving electric charges that affects other moving charges
- Special relativity: Magnetism is a *fictitious force* needed to guarantee Lorentz invariance when charges move [It's Einstein year!]
- There is nothing like "magnetic force"; electrical Coulomb interaction is enough. One observer may perceive a magnetic force where a moving observer perceives only an electrostatic force.
- Dealing with magnetism in the framework of Dirac equation is ideologically simple no need for magnetism to be introduced by God (as it is the case with Schrödinger equation).

Two ways of moving an electron

(A quick and dirty introduction to magnetism)



Orbital magnetic moment (1)

Classical expression for magnetic moment:

$$\boldsymbol{\mu}_{\mathrm{orb}} = I \boldsymbol{S} \implies \boldsymbol{\mu}_{\mathrm{orb}} = -\mu_B \boldsymbol{L}$$

where μ_B is Bohr magneton

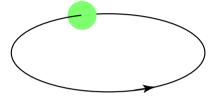
$$\mu_B \equiv \frac{e}{2m_e}\hbar$$

and L is angular momentum devided by \hbar .

For electron orbiting around an atom, the *z*-component of orbital magnetic moment is thus

$$\mu_{\rm orb}^{(z)} = -m_\ell \,\mu_B \quad ,$$

where m_{ℓ} is the magnetic quantum number.



Orbital magnetic moment (2)

Practical evaluation of orbital magnetic moment of electrons in a solid:

 β is Dirac matrix L_z is the *z*-component of a 4×4 matrix vector $I_4 \otimes L$ $G(\mathbf{r}, \mathbf{r}; E)$ is a 4×4 Green function matrix.

Even more practical evaluation of μ_{orb} : Find it in the output of the SPRKKR program.

Spin magnetic moment (1)

Electron spin: Picture of a rotating charged sphere fails (again ...)

 $oldsymbol{\mu}_{
m orb} = -\,\mu_B\,oldsymbol{L}$ vers. $oldsymbol{\mu}_{
m spin} = -\,oldsymbol{2}\,\mu_B\,oldsymbol{S}$

(*L* is angular momentum connected with *orbital* motion and *S* is angular momentum connected with the "*spin* motion").

For electron around an atom, the z-component of spin-related angular momentum is

$$S^{(z)} = \pm \frac{1}{2}\hbar$$
,

hence we get for a *z*-component of spin-related magnetic moment

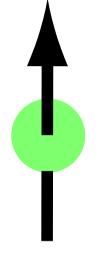
$$\mu^{(z)}_{
m spin} = \pm \mu_B$$
 .

Spin magnetic moment (2)

Practical evaluation of spin magnetic moment of electrons in a solid:

$$\mu_{\rm spin}^{(z)} = -\frac{\mu_B}{\pi} \operatorname{Im} \operatorname{Tr} \int_{-\infty}^{E_F} \mathrm{d}E \int \mathrm{d}^3 r \,\beta \,\sigma_z \, G(\boldsymbol{r}, \boldsymbol{r}, E) \ ,$$

 σ_z is the *z*-component of a 4×4 matrix vector $I_2 \otimes \boldsymbol{\sigma}$



Magnetism of Fe atom

Magnetic properties of atoms are governed by Hund rules

Electron configuration: $3d^64s^2$

- Spin magnetic moment: $\mu_{spin} = 4 \mu_B$
 - First Hund rule: Total atomic spin quantum number $S = \sum m_s$ is maximum (as long as it is compatible with Pauli exclusion principle)
- Orbital magnetic moment: $\mu_{\rm orb} = 2 \, \mu_B$
 - Second Hund rule: Total atomic orbital quantum number $L = \sum m_{\ell}$ is maximum (as long as it is compatible with Pauli exclusion principle and first Hund rule)

Bulk Fe

Generally: Magnetism is suppressed in the bulk (with respect to atomic case)

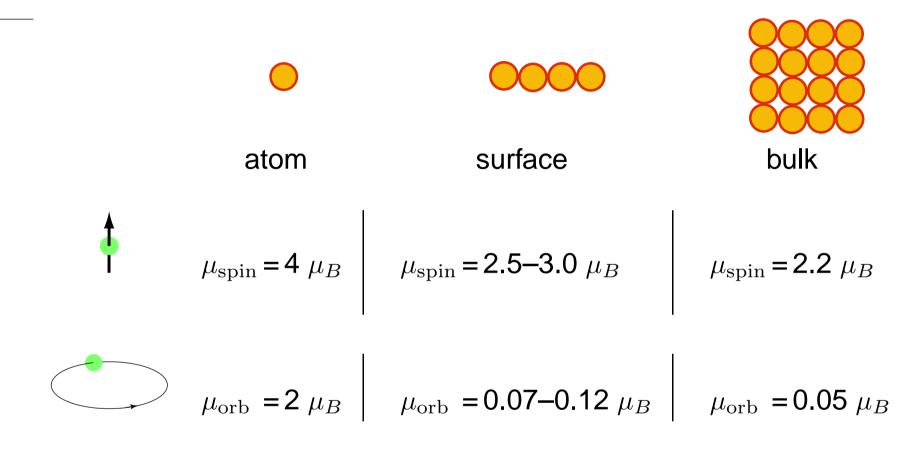
- Spin magnetic moment is $\mu_{
 m spin} pprox 2.2 \ \mu_B$ per atom
- The orbital magnetic moment is quenched (outright zero in non-relativistic case)
 - Intuitively: Electron are not free to orbit around atoms
 - Relativistic effect: The quenched orbital moment is partially restored by LS coupling ($\mu_{\rm orb} \approx 0.05 \mu_B$ per atom)

Surfaces are magnetism-friendly

Atoms at surfaces exhibit some atomic-like characteristics

- Spin magnetic moment is larger than in bulk; for Fe it is $\mu_{\rm spin} \approx 2.5$ –3.0 μ_B per atom
- The orbital magnetic moment is increased by an even larger percentage, $\mu_{\rm orb} \approx 0.07$ –0.12 μ_B per atom

Magnetism of iron: summary



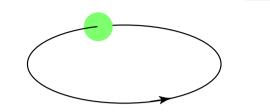
(clusters go in between)

Clusters contain a high portion of surface atoms

- \Rightarrow ought to have larger magnetic moments
 - their properties should display traces of surface and bulk trends

Why all the fuss with $\mu_{\rm orb}$?

 $\mu_{\rm orb}$ is small but important !



- It is a manifestation of spin-orbit coupling, which is the mechanism behind the magnetocrystalline anisotropy
- Under certain assumptions, magnetocrystalline anisotropy energy (MAE) can be estimated as

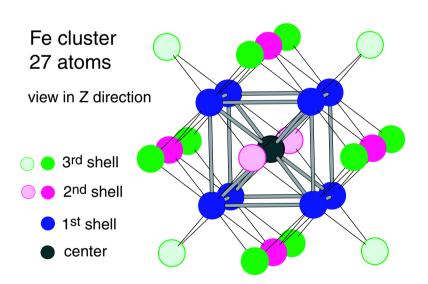
$$\Delta E_{\mathrm{M}AE} = \mathrm{const} \times \left(\boldsymbol{\mu}_{\mathrm{orb}}^{\parallel} - \boldsymbol{\mu}_{\mathrm{orb}}^{\perp} \right)$$

where $\mu_{\rm orb}^{\parallel}$ and $\mu_{\rm orb}^{\perp}$ are orbital magnetic moments for two perpendicular directions of the magnetization M

Ground-state magnetic properties of clusters

System we study

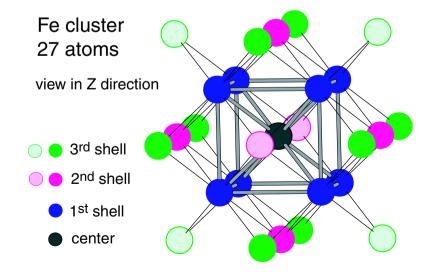
- free spherical-like Fe clusters with geometry taken as if cut from a bulk bcc Fe crystal
- cluster size between 9 atoms (1 coordination shell) and 89 atoms (7 coordinations shells)



shells	atoms	radius [Å]
1	9	2.49
2	15	2.87
3	27	4.06
4	51	4.76
5	59	4.97
6	65	5.74
7	89	6.25

Lowering of symmetry

- Magnetization and spin-orbit coupling lowers the symmetry of our systems
- Atoms belonging to the same coordination shell may be inequivalent
- Classes of equivalent atoms depend on the direction of magnetization M

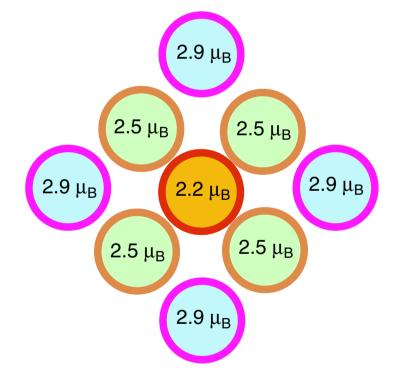


Theoretical formalism

LDA scheme

- Cluster calculations done in real space via a fully-relativistic spin-polarized multiple-scattering technique as implemented in the SPRKKR code
- crystal surfaces treated as 2D finite slabs (fully-relativistic spin-polarized TB-KKR method)
- spherical ASA approximation
- empty spheres put around the clusters in order to account for spilling of the electron charge into vacuum

Magnetic profiles of clusters



Local magnetic moments:

 $\mu_{\rm spin}$ and $\mu_{\rm orb}$ can be attributed to individual sites by performing the integrations

$$\mu_{
m spin} \, \sim \, \int {
m d}^3 r \, \beta \, \sigma_z \, G({m r},{m r},E)$$

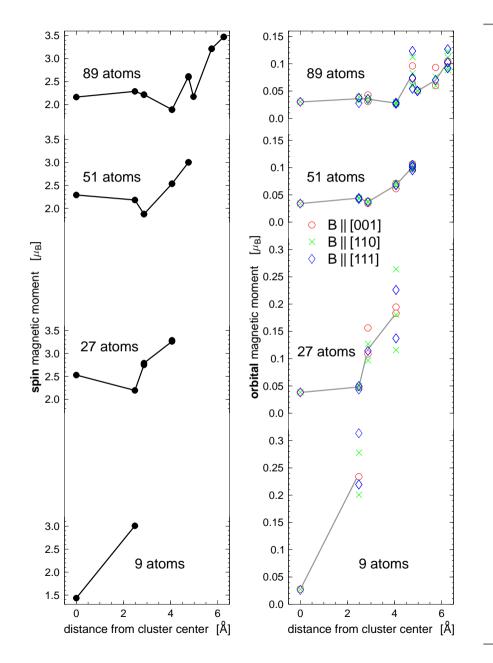
and

$$\mu_{\rm orb} \sim \int {\rm d}^3 r \, \beta \, L_z \, G(\boldsymbol{r}, \boldsymbol{r}, E)$$

over atomic spheres

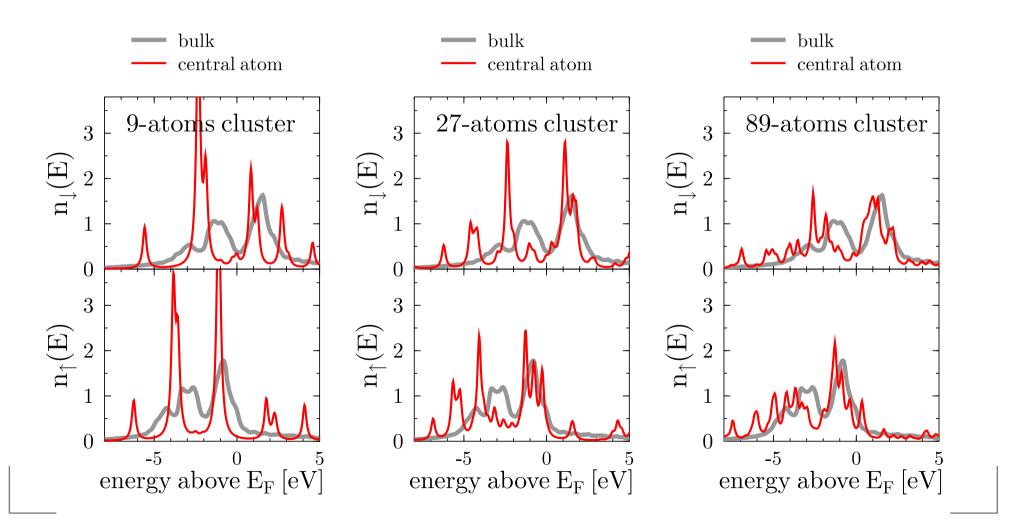
Free Fe clusters — the results

- $\mu_{
 m spin}$ does not depend on the direction of $oldsymbol{M}$
 - for inequivalent atoms of the same coordination sphere $\mu_{\rm spin}$ is the same
- $\mu_{
 m orb}$ depends on the direction of M
 - for inequivalent atoms of the same coordination sphere $\mu_{\rm orb}$ differs
- $\mu_{\rm orb}$ averaged over coordination spheres does not depend on the direction of M



DOS in clusters and in bulk

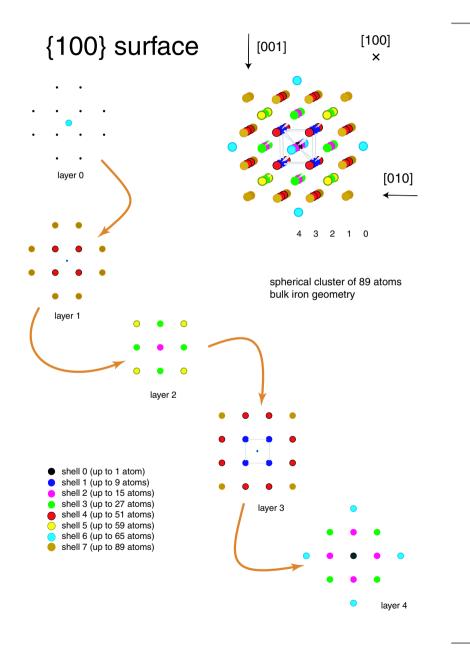
- Atomic-like features present in DOS of clusters
- DOS in the center of clusters approaches the bulk quite slowly



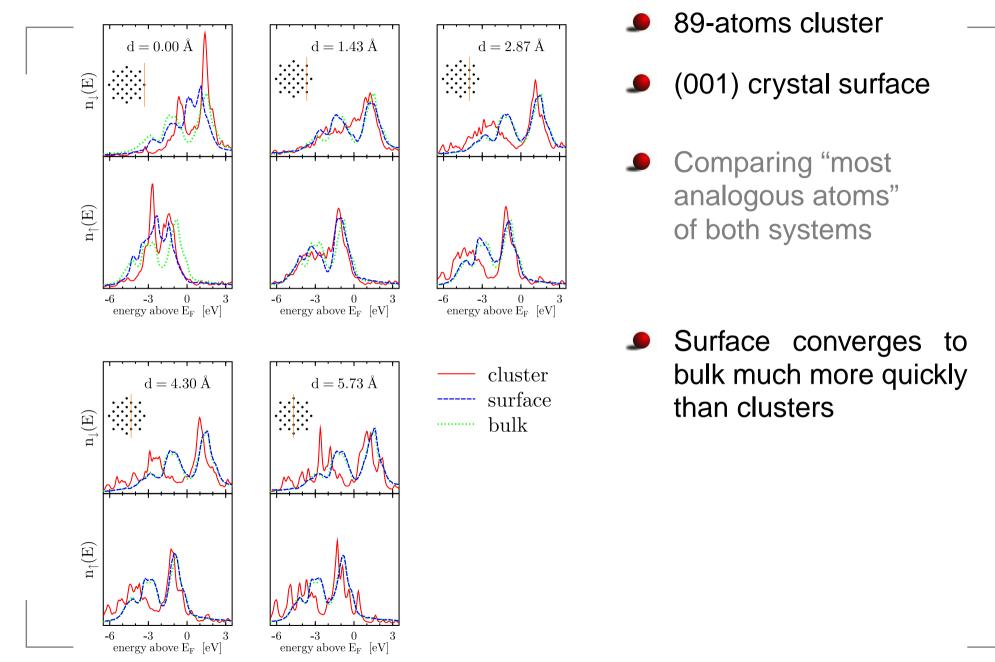
Clusters and crystal surfaces

Clusters vers. surfaces: HOWTO

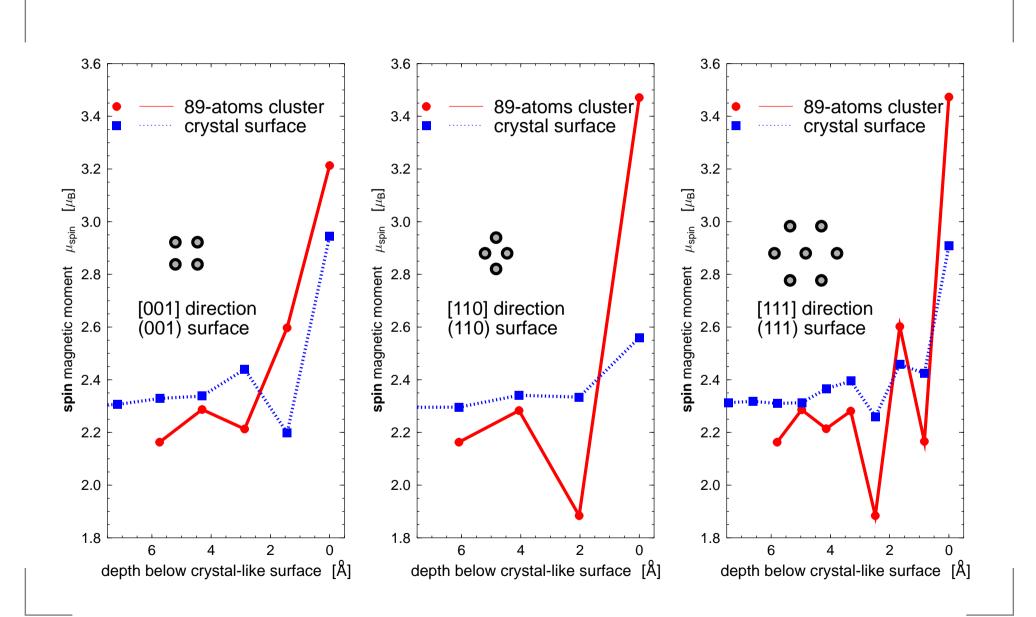
- take free iron cluster of 89 atoms
- drill a hole into this cluster
- inspect DOS, µ_{spin} and µ_{orb} around you and compare them with what you see beneath a crystal surface
- explore various "crystallographic directions"



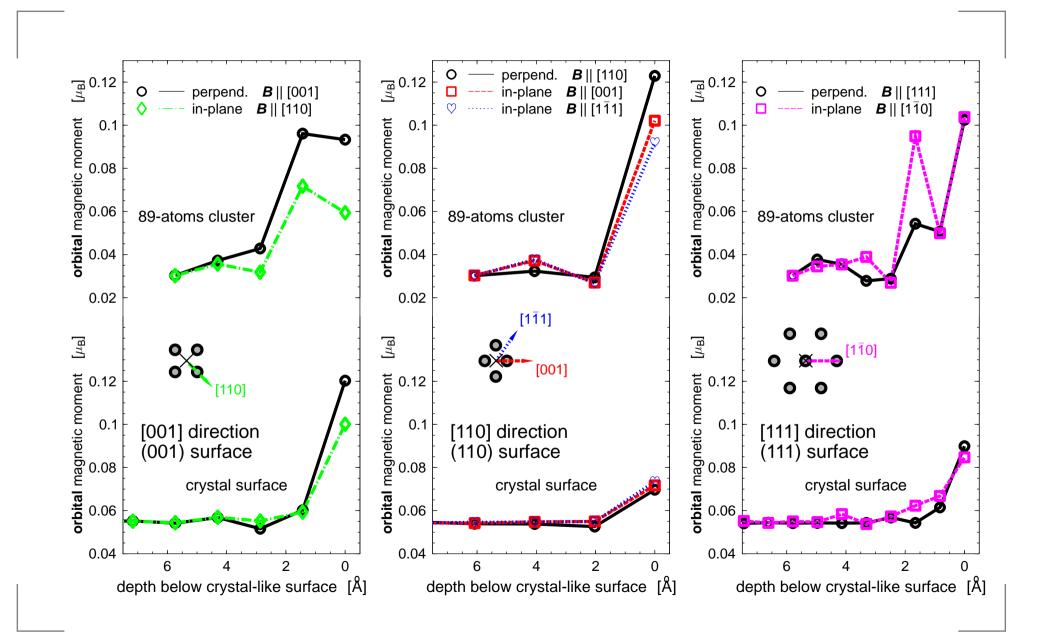
DOS profile in clusters and at surfaces



Clusters vers. surfaces: μ_{spin}



Clusters vers. surfaces: $\mu_{\rm orb}$



A lot of profiles, a lot of data \Rightarrow a lot of chaos...

Is there a way out?

Dependence of μ_{spin} **on** N_{eff}

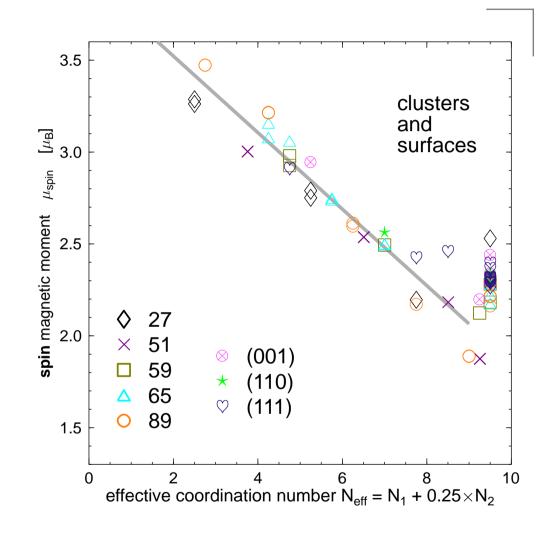
Effective coordination number: for a *bcc* crystal one defines

 $N_{\rm eff} = N_1 + 0.25 \times N_2$,

where N_1 is number of 1^{st} neighbors and N_2 is number of 2^{nd} neighbors.

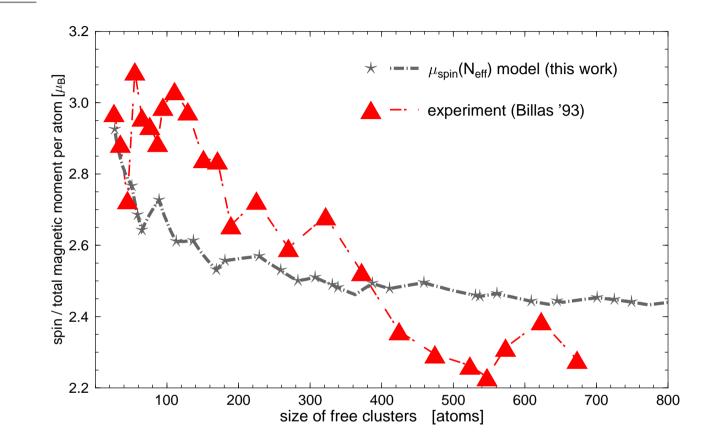
[D. Tománek *et al.* PRB **28**, 665 (1983); J. Zhao *et al.* Physics Letters A **205**, 308 (1995)]

Empirical model dependence: $\mu_{\rm spin} = -0.21 \times N_{\rm eff} + 3.94$



No simple dependence works for the orbital moment $\mu_{\rm orb}$.

Large clusters via $\mu_{spin}(N_{eff})$



Assumption: clusters grow by filling successive coordination spheres; within a sphere, atoms adsorb so that they have max. coordination

Magnetic moment of whole clusters (per atom) can be compared with experiment [I.M.L. Billas *et al.* PRL **71**, 4067 (1993)]

Magnetism in clusters: summary

- In free clusters, μ_{spin} and μ_{orb} are enhanced at atoms close to the cluster surface.
- μ_{orb} at *individual* atoms strongly depends on the direction of *M*. However, the anisotropy in μ_{orb} averaged over whole coordination spheres is very small.
- Oscillations both in µ_{spin} and in µ_{orb} are a general feature of magnetic profiles in clusters and at crystal surfaces. These oscillations are more pronounced in clusters than at crystal surfaces.
- \blacksquare $\mu_{\rm spin}$ in clusters and at crystal surfaces depends linearly on $N_{\rm eff}$

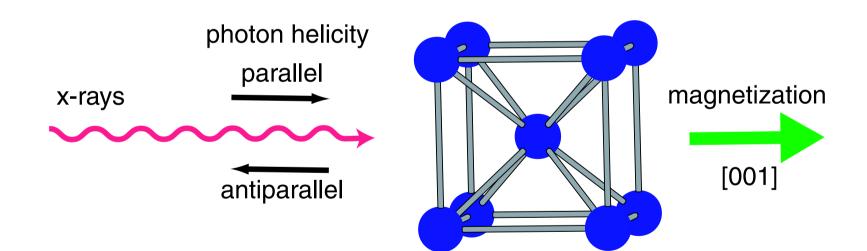
Spectroscopy

What can XMCD do for us?

- XMCD spectroscopy probes the magnetic properties of materials
- Through the sum rules, XMCD can inform about μ_{spin} and μ_{orb} separately
 - $L_{2,3}$ edge: sum rules give access to the *d* components of μ_{spin} and μ_{orb} (for transition metals, that's what we want)
 - K edge: sum rule gives access to the p component of $\mu_{\rm orb}$
- Employing sum rules on experimental data may require substantial theoretical input
- Theoretical modelling should provide an intuitive understanding of what is going on

Our setup

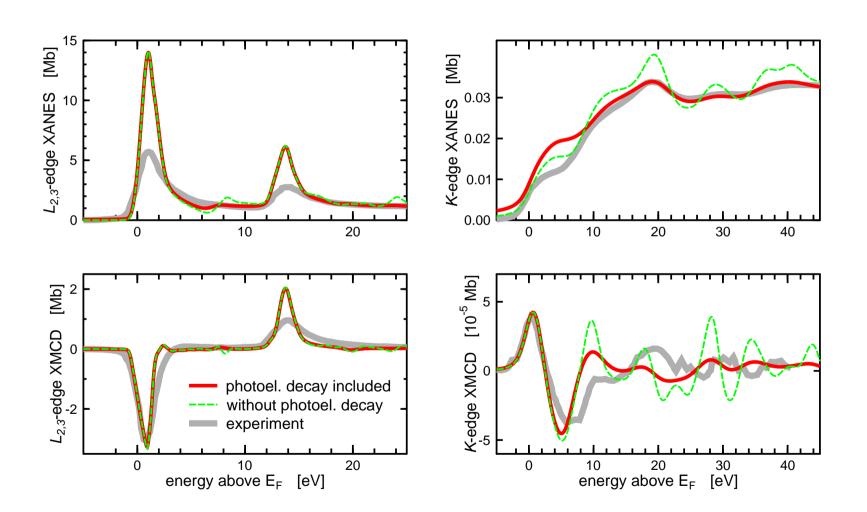
Helicity of the incoming photons is parallel or antiparallel with the cluster magnetization M (coincides with the [001] direction in the parental crystal)



Some more details

- Spectrum of cluster is a superposition of spectra at edges of individual atoms
- The spectra do not depend on the direction of M
 - magnetic anisotropy in bcc-like Fe clusters is practically negligible
 - average of $\mu_{\rm orb}$ over all atoms does not depend on M either
- Core hole neglected
- Fe $L_{2,3}$ edge: localized, should not be very sensitive to cluster geometry (i.e. size)
- Fe K edge: delocalized, should be sensitive to cluster size

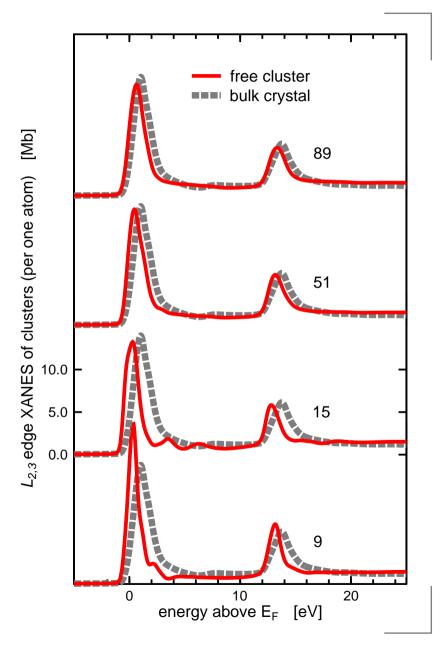
$L_{2,3}$ and K edge spectra of Fe crystal



– p.37/55

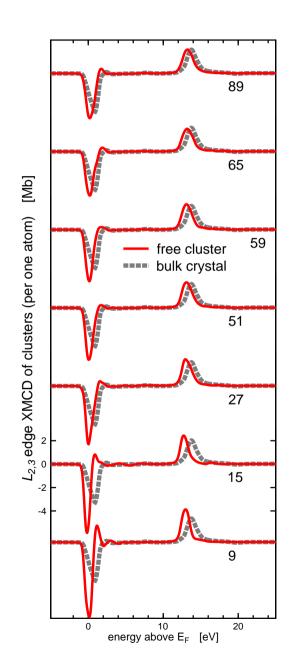
$L_{2,3}$ edge XAS of clusters

- No significant variation with cluster size
- Fine structure just after the L₃ white line — presence of truly discrete states (vaccum level is 5–8 eV above E_F)
- Smoothening of peaks for larger clusters

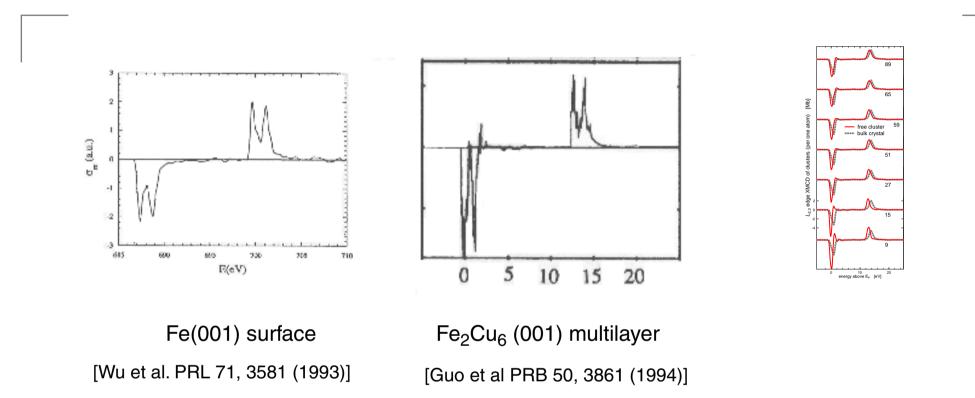


$L_{2,3}$ edge XMCD of clusters

- Similar shape for clusters and for the bulk
- Peak *intensity* systematically decreases and peak *width* increases with increasing cluster size
- No systematic variations for areas of peaks (cluster magnetization oscillates with cluster size)
- Small yet distinct positive hump just after the main *L*₃ peak



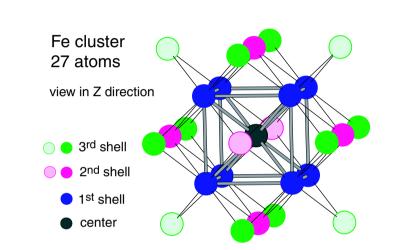
Where have all the structures gone?



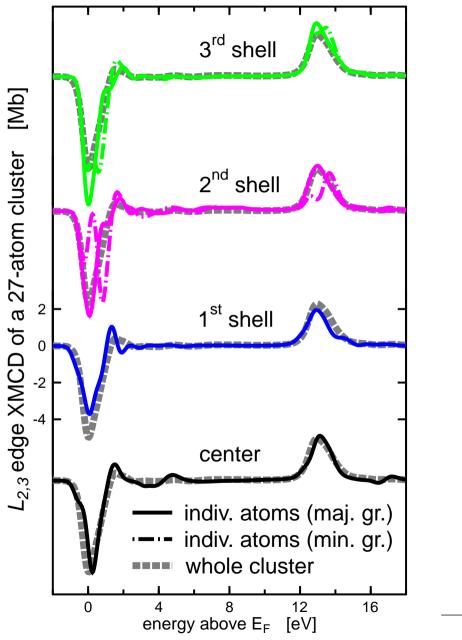
Calculated XMCD of Fe surface or multilayers exhibit quite a pronounced fine structure at the Fe L_3 and L_2 edges.

Calculated XMCD of clusters display no such fine structure.

The wiggles in XMCD mutually cancel!

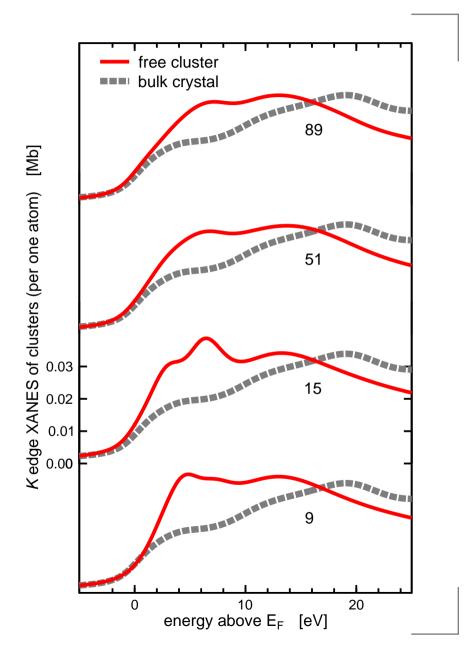


Spectrum of the whole cluster is a superposition of signals from all individual atoms



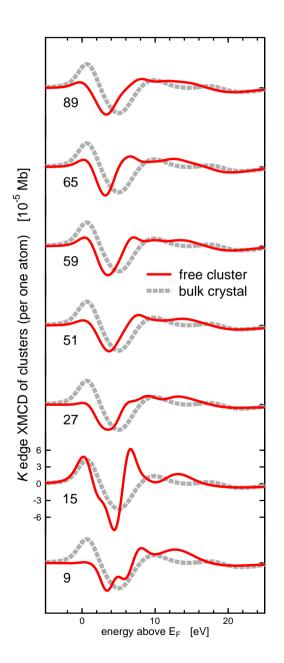
$K \ {\bf edge} \ {\bf XAS} \ {\bf of} \ {\bf clusters}$

- Difference between clusters and bulk larger than in the case of L_{2,3} edge
- Small clusters give rise to higher intensities in the low-energy lobe of the main peak
- Even for the 89-atom cluster, difference between cluster and bulk XAS remains



$K \ {\bf edge} \ {\bf XMCD} \ {\bf of} \ {\bf clusters}$

- Size affects not only shape and intensity of individual oscillations but also their positions
- Peak around 1 eV suppressed for most clusters
- *K* edge XMCD more sensitive to the cluster size than *L*_{2,3} edge



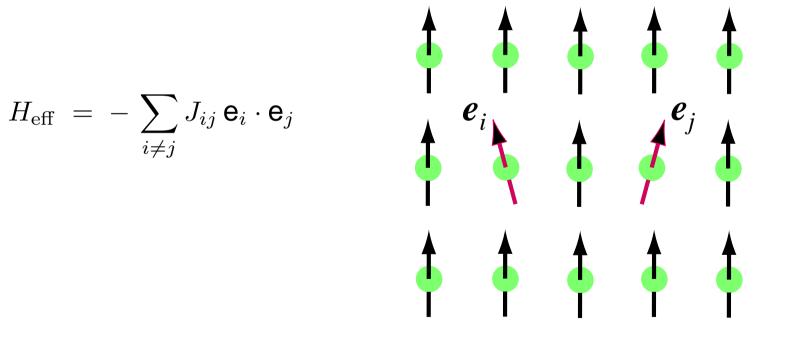
XAS and XMCD of clusters: summary

- Difference between electronic structure of Fe clusters and of a Fe crystal is reflected by the difference in their XMCD
- This difference is more significant at the K edge than at the $L_{2,3}$ edge
- The $L_{2,3}$ edge XMCD of the clusters differ from the bulk only quantitatively through higher intensities of the dominant peaks.
- Small yet distinct positive hump just after the L₃ peak a marker of "clusterization" in XMCD spectra?
- The K edge XMCD spectra of clustersdiffer significantly from the bulk

Magnetic properties of clusters at $T \neq 0$

Finite temperature magnetism

For localized moments, finite temperature magnetism can be described by a classical Heisenberg hamiltonian



Mapping DFT onto Heisenberg

Comparing energy associated with infinitesimal rotations of local magnetic moments \implies

$$J_{ij} = -\frac{1}{4\pi} \operatorname{Im} \int_{-\infty}^{E_F} dE \operatorname{Tr} \left[\left(t_{i\uparrow}^{-1} - t_{i\downarrow}^{-1} \right) \tau_{\uparrow}^{ij} \left(t_{j\uparrow}^{-1} - t_{j\downarrow}^{-1} \right) \tau_{\downarrow}^{ji} \right]$$

[Liechtenstein et al. (1986), involving multiple-scattering formalism, linear response theory, spin-polarized local force theorem and long wave approximation]

Valid only if magnetism can be described by localized magnetic moments (fine for Fe)

From J_{ij} to M(T)

Mean magnetization M(T) of a system described by a classical Heisenberg hamiltonian is

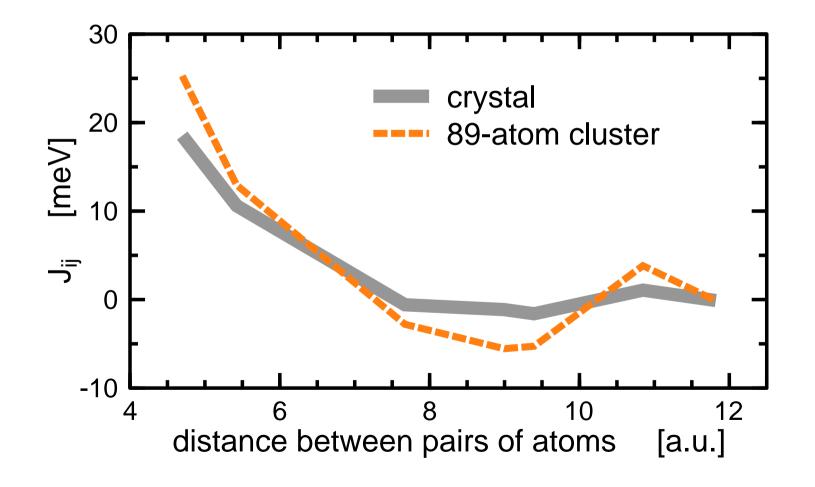
$$M(T) = \frac{\sum_{k} M_k \exp(-\frac{E_k}{k_B T})}{\sum_{k} \exp(-\frac{E_k}{k_B T})}$$

where M_k is the magnetization of the system for a particular configuration k of the directions of spins and E_k is the energy of such a configuration

- Practical evaluation: Monte Carlo method with the importance sampling Metropolis algorithm
- For bulk Fe, this procedure yields finite-temperature results that are in a good agreement with experiment

Dependence of J_{ij} **on the distance**

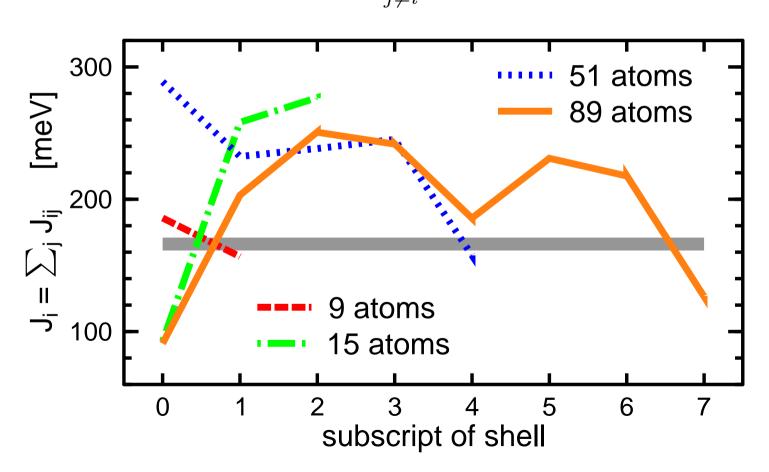
Atom i is in the center of an 89-atom cluster and the atom j belongs to subsequent coordination shells of that cluster



Site-dependence of
$$\sum_{j
eq i} J_{ij}$$

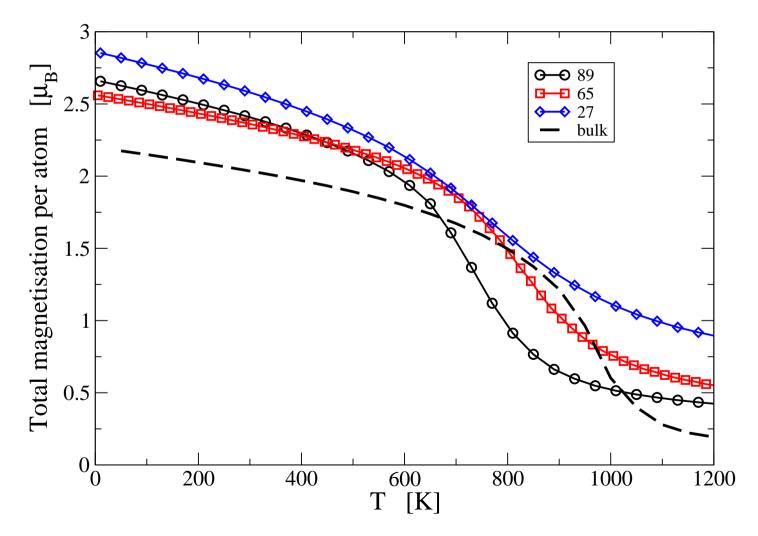
Energy needed to flip the spin of atom *i* while keeping all the remaining spins collinear:

$$J_i = \sum_{j \neq i} J_{ij}$$
 ,



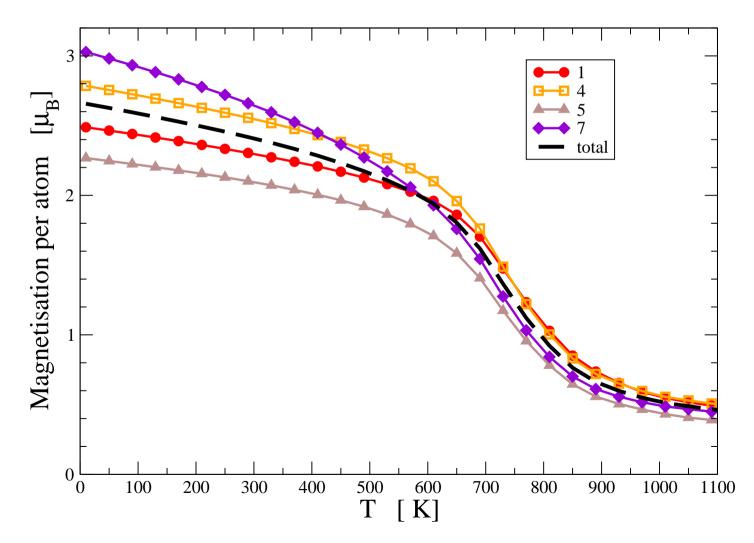
${\cal M}(T)$ in clusters and in bulk

M(T) curves are more shallow in clusters (no phase transition for finite systems)



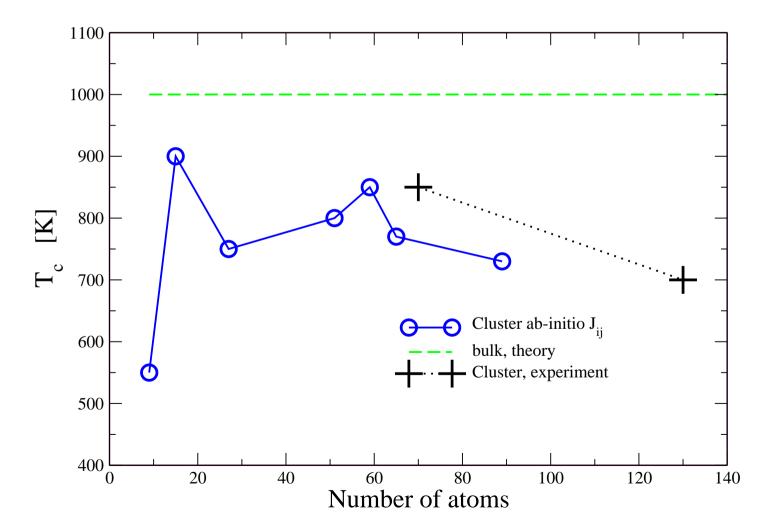
Shell-resolved magnetization

Projecting magnetization of given shell onto the direction of the magnetic moment of the whole 89-atom cluster



Dependence of T_c **on cluster size**

Critical temperature defined as the inflection point of M(T) curves Extrapolation techniques used for bulk (fourth order cumulant) Experiment of Billas et al. (1993)



$T \neq 0$ magnetism: summary

- Exchange coupling constants J_{ij} in clusters differ from the bulk, with no obvious systematics (\Rightarrow one has to calculate it...)
- Magnetization M(T) curves are more shallow from small clusters than for large clusters
- Magnetization of the outer shells decreases with temperature more quickly than magnetizatin of inner shells (usually...)
- **\square** Critical temperature T_c oscillates with cluster size

Cluster physics in a nutshell

- Anything that can oscillate, will oscillate
- Using bulk data (potentials, exchange constants, ...) for cluster calculations does no good
- **For best results, use the** SPRKKR code

