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Outline

◮ Spin stiffness D / exchange stiffness Aex:
What it is good for?

◮ Two ways to evaluate spin stiffness D.

◮ Issues with D calculations: “larger than small” spread of
results.

◮ Checking potential risk factors.
Drawing practical advice.

◮ Effects of spin-orbit coupling on the spin stiffness D.
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Why to care about the stiffness?

Micromagnetics:
Continuum approximation, the angle of the magnetization changes slowly

over atomic distances, spin vectors are replaced by a continuous

function m(r).

E [m] =

∫

V

dr

{

Aex

[

(

∂m

∂x

)2

+

(

∂m

∂y

)2

+

(

∂m

∂z

)2
]

+ . . .

}

Exchange stiffness Aex, spin wave stiffness D:

Aex =
D Ms

2gµB

Ms is saturation magnetization, g is Landé factor (g ≈ 2 for metals).
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Spin stiffness D from spin spirals

Long wavelength limit of the acoustic mode of magnon dispersion:

ǫ(q) = D |q|2 + β |q|4 + . . .

For cubic systems:

Dispersion relation for magnon spectra ǫ(q) can be obtained from
the change of the total energy per unit cell due to a spin spiral
state with wave vector q, spiral cone angle θ, and magnetic
moment per site M,

ǫ(q) = lim
θ→0

4µB

M

E (q, θ) − E (0, θ)

sin2 θ
.

[Kübler, Theory of itinerant electron magnetism (2000)]
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Spin stiffness D from exchange coupling constants

By relying on the Heisenberg Hamiltonian

H = −
∑

ij

Jij êi · êj ,

one arrives (for isotropic systems) to

D =
∑

j

2µB

3M
J0j R

2
0j .

R0j is the interatomic distance.

ei ej

Jij

Convergence issues solved by introducing the damping parameter η:

D = lim
η→0

D(η) = lim
η→0

∑

j

2µB

3M
J0j R

2
0j exp

(

−η
R0j

a0

)

.

a0 is lattice parameter.
[Pajda et al. PRB 64, 174402 (2001)]
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Expressions are simple. So why should we care?

◮ Differences between theory and experiment (even for
nominally simple systems).

◮ Differences between various calculations (even for nominally
simple systems).

◮ It is hard to assess the impact of physical approximations in
the theory if the technical evaluation of the expression itself is
unreliable.
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Spread of results: Spin wave stiffness D for Fe

Experiment:

D (meV Å2)
Hatherly (1964) 325
Phillis (1966) 350
Stringfellow (1968) 314
Riede (1973) 311
Pauthenet (1982) 270
Loong (1984) 307

Theory:

D (meV Å2)
Mryasov (1996) 214
Rosengaard (1997) 247
Brown (1999) 135
Schilfgaarde (1999) 280
Kübler (2000) 355
Pajda (2001) 250
Moran (2003) 200
Shallcross (2005) 313/322
Pan (2017) 320/466

Our results
(KKR-ASA):

by fitting spirals at q → 0 D = 280±5 meV Å2

from JijR
2
0j ’s D = 302±5 meV Å2
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Spread of results: Spin wave stiffness D for Ni

Experiment:

D (meV Å2)
Hatherly (1964) 400
Stringfellow (1968) 470
Mook (1973) 555
Hennion (1975) 525
Maeda (1976) 390
Riede (1977) 398
Lynn (1981) 593
Pauthenet (1982) 413
Nakai (1983) 530
Mitchell (1985) 398

Theory:

D (meV Å2)
Mryasov (1996) 527
Rosengaard (1997) 739
Brown (1999) 480
Schilfgaarde (1999) 740
Kübler (2000) 790
Pajda (2001) 756
Shallcross (2005) 541
Pan (2017) 707

Our results
(KKR-ASA):

by fitting spirals at q → 0 D = 705±5 meV Å2

from JijR
2
0j ’s D = 675±10 meV Å2
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Spread of results: Permalloy (Py) Fe0.2Ni0.8

Experiment:

D (meV Å2)
Hatherly (1964) 400
Hennion (1975) 335
Nakai (1983) 390

Theory:

D (meV Å2)
Yu (2008) 515
Pan (2017) 655/620

Our results
(KKR-ASA):

by fitting spirals at q → 0 D = 503±5 meV Å2

from JijR
2
0j ’s D = 527±5 meV Å2
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Fitting spin spiral dispersion for q → 0

Self-consistent calculation vers. magnetic force theorem

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  0.2  0.4  0.6  0.8  1

[E
(t

he
ta

,q
) 

- 
E

(t
he

ta
,0

)]
 / 

si
n^

{2
}(

th
et

a)
   

(R
y)

spin spiral wave vector q in the [001] direction   (units of 2*PI/a_0)

Spin spirals for Fe (SCF calculations and magnetic force theorem)

mag. force theorem, theta=90
SCF calculation, theta=90

mag. force theorem, theta=45
SCF calculation, theta=45

mag. force theorem, theta=20
SCF calculation, theta=20
SCF calculation, theta=5

mag. force theorem, theta=5

Fe

ǫ(q) = lim
θ→0

4µB

M

E (q, θ) − E (0, θ)

sin2 θ

ǫ(q) = D |q|
2

+ β |q|
4

Doing the limit θ → 0 is not a problem, the ratio ∆E (q, θ)/ sin2 θ
depends on θ only midly.
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Fitting spin spiral dispersion for q → 0

Self-consistent calculation vers. magnetic force theorem
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4µB

M

E (q, θ) − E (0, θ)
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ǫ(q) = D |q|
2
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4
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Stiffness D by fitting ǫ(q) ≈ Dq2

Robust with respect to

◮ the size of the interval within which the fit is made,

◮ use of magnetic force theorem,

◮ spiral cone angle θ,

◮ other technical parameters (such as density of the k-mesh in the
Brillouin zone.)

So why should we care about convergence issues of the sum

limη→0
∑

j
2µB

3M J0j R
2
0j exp

(

−η
R0j

a0

)

?

Because it can be applied also for alloys with more atomic types
which may be non-magnetic or may carry induced moments.

Such atoms should be excluded, which is difficult to be done with spin

spirals.
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∑

j J0jR
2
0j exp(−ηR0j/a0) issues: R0j , k-mesh

Dependence of D on the maximum distance R0j
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∑

j J0jR
2
0j exp(−ηR0j/a0) issues: R0j , k-mesh

Dependence of D on the maximum distance R0j
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For small damping η, reliable values of D obtained only if
∑

j extends to long distances, which requires very fine k-mesh.
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Extrapolation of D(η) to zero damping

Sum
∑

j J0jR
2
0j exp(−ηR0j/a0) has to be extrapolated to η=0.

Pajda et al. PRB 64, 174402 (2001) Thoene et al. J. Phys.D: 42, 084013 (2009)

Commonly, extrapolation by means of a quadratic fit has been
employed.

However, the extrapolation is not “unique”.
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Extrapolation of D(η) to zero damping

Sum
∑

j J0jR
2
0j exp(−ηR0j/a0) has to be extrapolated to η=0.
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Extrapolation of D(η) to zero damping

Sum
∑

j J0jR
2
0j exp(−ηR0j/a0) has to be extrapolated to η=0.
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Sensitivity to technical parameters of the extrapolation

Stiffness D for fcc Ni obtained from
∑

j J0jR
2
0j exp(−ηR0j/a0)

for different ways of doing the extrapolation to η = 0:

fit interval
D (meV Å2)

2nd order 3rd order 5th order
η polynomial polynomial polynomial

0.2–1.0 633 684 706

0.3–1.0 608 673 700

0.4–1.0 584 660 704

0.5–1.0 560 646 709

0.6–1.0 537 631 705

0.7–1.0 516 616 662
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Stiffness D by extrapolating
∑

j J0jR
2
0j exp(−ηR0j/a0)

Extrapolation of the sum
∑

j J0jR
2
0j exp(−ηR0j/a0) to η = 0

is fragile.

It is necessary to go to small η’s, which requires

◮ large cut-off of the interatomic distance R0j , and consequently

◮ very dense k-mesh.

Using brute force seems to be unavoidable.

16



Including the relativistic effects

Exchange interaction is anisotropic ⇒ modified Heisenberg
Hamiltonian:

H = −
∑

ij

êi J ij êj ,

The exchange tensor Jααij is anisotropic.

Assuming the reference direction of magnetization m̂||ẑ:

Dνν =
1

M

∑

j

[Jxx0j + Jyy0j ]R
2
0j ,ν

For cubic systems:
Jxx0j = Jyy0j = Jzz0j as well as Dxx = Dyy = Dzz , and therefore, the
relativistic results shoud be similar to those obtained using the
non-relativistic expression.
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Effect of SOC on exchange coupling constants

Case study: Effect of spin-orbit coupling (SOC) on Jxx0j of hcp Gd.
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Values of Jxx0j with SOC and without SOC are close to each other,
the same applies to spin stiffness.
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Conclusion

◮ Evaluating spin wave stiffness D by fitting the
spin spiral dispersion relation and by
extrapolating the sum

∑

j J0jR
2
0j exp(−ηR0j/a0)

to zero damping indeed leads to similar results
(provided that all convergence issues have been

harnessed).

◮ Do not use the
∑

j J0jR
2
0j exp(−ηR0j/a0) sum

for evaluating D unless really necessary.

◮ If pressed to use it, extend the R0j radii as far as
you can. Deal with “ridiculosly large” clusters of
∼100000 atoms.

◮ Spin-orbit coupling modifies the values of D only
slightly.
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Robustness of the fitting procedure

Stiffness D for Fe and Ni by fitting magnon dispersion relation
around q → 0 in different q-intervals:

q-range D (Fe) standard D (Ni) standard
(2π/a0) (meV Å2) error (meV Å2) error

0–0.10 258 13 % 706 4 %

0–0.15 271 5 % 694 2 %

0–0.20 292 2 % 682 1 %

0–0.30 302 0.7 % 673 0.6 %

Self-consistent calculations for spiral cone angle θ=20◦.

Spin stiffness D obtained by fitting ǫ(q) = D |q|2 + β |q|4

is robust against the range in which it is accomplished.
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Magnetic force theorem, spiral cone angle θ

Stiffness D of Fe
(in units meV Å2).

θ via SCF via mag.
(◦) force th.

5 291 309
10 305 308
15 303 306
20 302 304
45 292 296
90 282 286

Stiffness D of Ni
(in units meV Å2).

θ via SCF via mag.
(◦) force th.

5 675 683
10 688 679
15 675 679
20 673 682
45 675 683
90 696 702

Fitting by D |q|2 + β |q|4 done in the range q ∈ [0 : 0.3].

Spin stiffness D is robust with respect to whether it is evaluated
from self-consistent calculations and by relying on the magnetic
force theorem and with respect to the choice of the spiral cone
angles θ.
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