Magnetism and spectroscopy of clusters What the SPRKKR package is good for

O. Šipr¹ J. Minár² S. Polesya² M. Košuth² S. Bornemann² H. Ebert²

¹Institute of Physics, Academy of Sciences of the Czech Republic, Prague http://www.fzu.cz/~sipr

²Universität München, Department Chemie und Biochemie, München

25. June 2009 / KKR and Spectroscopy — Hands-on Course

Introduction: Clusters and magnetism Primer on clusters Magnetism — basic concepts

Free Fe clusters — ground-state magnetic properties Magnetism of clusters — intuitive expectations Clusters - DOS, $\mu_{\rm spin}$, $\mu_{\rm orb}$ Comparing Fe clusters and Fe surfaces

Magnetism of free and supported clusters

Magnetism of clusters for $T \neq 0$ Finite temperature magnetism HOWTO Free Fe clusters: exchange coupling Free Fe clusters: magnetization

Introduction: Clusters and magnetism

Primer on clusters Magnetism — basic concepts

Free Fe clusters — ground-state magnetic properties Magnetism of clusters — intuitive expectations Clusters - DOS, $\mu_{\rm spin}$, $\mu_{\rm orb}$ Comparing Fe clusters and Fe surfaces

Magnetism of free and supported clusters

Magnetism of clusters for $T \neq 0$ Finite temperature magnetism HOWTO Free Fe clusters: exchange coupling Free Fe clusters: magnetization

Introduction: Clusters and magnetism

Primer on clusters Magnetism — basic concepts

Free Fe clusters — ground-state magnetic properties Magnetism of clusters — intuitive expectations Clusters - DOS, $\mu_{\rm spin}$, $\mu_{\rm orb}$ Comparing Fe clusters and Fe surfaces

Magnetism of free and supported clusters

Magnetism of clusters for $T \neq 0$ Finite temperature magnetism HOWTO Free Fe clusters: exchange coupling Free Fe clusters: magnetization

Introduction: Clusters and magnetism

Primer on clusters Magnetism — basic concepts

Free Fe clusters — ground-state magnetic properties Magnetism of clusters — intuitive expectations Clusters - DOS, $\mu_{\rm spin}$, $\mu_{\rm orb}$ Comparing Fe clusters and Fe surfaces

Magnetism of free and supported clusters

Magnetism of clusters for $T \neq 0$ Finite temperature magnetism HOWTO

Free Fe clusters: exchange coupling

Free Fe clusters: magnetization

Introduction: Clusters and magnetism

Primer on clusters Magnetism — basic concepts

Free Fe clusters — ground-state magnetic properties Magnetism of clusters — intuitive expectations Clusters - DOS, $\mu_{\rm spin}$, $\mu_{\rm orb}$ Comparing Fe clusters and Fe surfaces

Magnetism of free and supported clusters

Magnetism of clusters for $T \neq 0$

Finite temperature magnetism HOWTO Free Fe clusters: exchange coupling Free Fe clusters: magnetization

X-ray absorption spectroscopy of clusters

Primer on x-ray absorption spectroscopy XAS and XMCD of free Fe clusters Verification of XMCD sum rules for $Fe_N/Ni(001)$

◆□▶ ◆□▶ ★ 臣▶ ★ 臣▶ = 臣 = のへぐ

Introduction: Clusters and magnetism

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Clusters: Who they are?

- Clusters = systems of tens to hundreds of atoms
- \blacktriangleright Radii from ${\sim}6$ Å for a 100-atom cluster to ${\sim}15$ Å for a 1000-atom cluster

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Clusters: Who they are?

- Clusters = systems of tens to hundreds of atoms
- ▶ Radii from ~6 Å for a 100-atom cluster to ~15 Å for a 1000-atom cluster
- ▶ Free clusters giant molecules, surrounded by vacuum

Clusters: Who they are?

- Clusters = systems of tens to hundreds of atoms
- ▶ Radii from ~6 Å for a 100-atom cluster to ~15 Å for a 1000-atom cluster
- ► Free clusters giant molecules, surrounded by vacuum

Supported clusters — adsorbed on a surface

Clusters: What can we expect ?

 Clusters mark the transition between atoms, surfaces and bulk systems

Interesting phenomena (and a lot of fun) can be anticipated

• Our main focus will be on their *magnetic* properties

Clusters: What can we expect ?

 Clusters mark the transition between atoms, surfaces and bulk systems

Interesting phenomena (and a lot of fun) can be anticipated

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

• Our main focus will be on their *magnetic* properties

Clusters: What can we expect ?

 Clusters mark the transition between atoms, surfaces and bulk systems

Interesting phenomena (and a lot of fun) can be anticipated

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

• Our main focus will be on their *magnetic* properties

Where does magnetism come from?

- Classically: Magnetic field is *something* produced by moving electric charges that affects other moving charges
- Special relativity: Magnetism is a *fictitious force* needed to guarantee Lorentz invariance when charges move
- Dealing with magnetism in the framework of Dirac equation is ideologically simple
 - No need for magnetism to be introduced by God (as it is the case with Schrödinger equation)

Where does magnetism come from?

- Classically: Magnetic field is *something* produced by moving electric charges that affects other moving charges
- Special relativity: Magnetism is a *fictitious force* needed to guarantee Lorentz invariance when charges move
- Dealing with magnetism in the framework of Dirac equation is ideologically simple
 - No need for magnetism to be introduced by God (as it is the case with Schrödinger equation)

Where does magnetism come from?

- Classically: Magnetic field is *something* produced by moving electric charges that affects other moving charges
- Special relativity: Magnetism is a *fictitious force* needed to guarantee Lorentz invariance when charges move
- Dealing with magnetism in the framework of Dirac equation is ideologically simple
 - No need for magnetism to be introduced by God (as it is the case with Schrödinger equation)

Two ways of moving an electron

(A quick and dirty introduction to magnetism)

Orbital magnetic moment (1)

Classical expression for magnetic moment:

$$\mu_{
m orb} = I \, {f S} \implies \mu_{
m orb} = - \mu_B \, {f L}$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

where μ_B is Bohr magneton

$$u_B \equiv \frac{e}{2m_e}\hbar$$

and ${\bf L}$ is angular momentum devided by $\hbar.$

For electron orbiting *around an atom*, the *z*-component of orbital magnetic moment is thus

$$\mu_{\rm orb}^{(z)} = - m_\ell \, \mu_B \; ,$$

where m_{ℓ} is the magnetic quantum number.

Orbital magnetic moment (1)

Classical expression for magnetic moment:

$$\mu_{
m orb} = I \, {f S} \implies \mu_{
m orb} = - \mu_B \, {f L}$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

where μ_B is Bohr magneton

$$u_B \equiv \frac{e}{2m_e}\hbar$$

and **L** is angular momentum devided by \hbar .

For electron orbiting *around an atom*, the *z*-component of orbital magnetic moment is thus

$$\mu_{\rm orb}^{(z)} = - m_\ell \, \mu_B \ ,$$

where m_{ℓ} is the magnetic quantum number.

Orbital magnetic moment (2)

Practical evaluation of orbital magnetic moment of electrons in a solid:

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

$$\mu_{\rm orb}^{(z)} = -\frac{\mu_B}{\pi} \operatorname{Im} \operatorname{Tr} \, \int_{-\infty}^{L_F} \mathrm{d}E \int \mathrm{d}^3 r \beta \, L_z \, G(\mathbf{r}, \mathbf{r}; E) \ ,$$

 β is Dirac matrix L_z is the z-component of a 4 × 4 matrix vector $I_4 \otimes \mathbf{L}$ $G(\mathbf{r}, \mathbf{r}; E)$ is a 4 × 4 Green function matrix.

Even more practical evaluation of μ_{orb} : Find it in the output of the SPRKKR program.

Orbital magnetic moment (2)

Practical evaluation of orbital magnetic moment of electrons in a solid:

$$\mu_{\rm orb}^{(z)} = -\frac{\mu_B}{\pi} \operatorname{Im} \operatorname{Tr} \, \int_{-\infty}^{E_F} \mathrm{d}E \int \mathrm{d}^3 r \beta \, L_z \, G(\mathbf{r}, \mathbf{r}; E) \ ,$$

 β is Dirac matrix L_z is the z-component of a 4 × 4 matrix vector $I_4 \otimes \mathbf{L}$ $G(\mathbf{r}, \mathbf{r}; E)$ is a 4 × 4 Green function matrix.

Even more practical evaluation of μ_{orb} : Find it in the output of the SPRKKR program.

Spin magnetic moment (1)

Electron spin: Picture of a rotating charged sphere fails...

$$\mu_{
m orb} = -\mu_B \, {\sf L}$$
 vers. $\mu_{
m spin} = - 2 \, \mu_B \, {\sf S}$

L is angular momentum connected with *orbital* motion S is angular momentum connected with "*spinning*"

For electron *around an atom*, the *z*-component of spin-related angular momentum is

$$S^{(z)} = \pm \frac{1}{2}\hbar ,$$

hence we get for a z-component of spin-related magnetic moment

$$\mu^{(z)}_{
m spin} = \pm \mu_B$$
 .

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Spin magnetic moment (1)

Electron spin: Picture of a rotating charged sphere fails...

$$\mu_{
m orb} = -\mu_B \, {\sf L}$$
 vers. $\mu_{
m spin} = - \, {\sf 2} \, \mu_B \, {\sf S}$

L is angular momentum connected with *orbital* motion S is angular momentum connected with "*spinning*"

For electron *around an atom*, the *z*-component of spin-related angular momentum is

$$S^{(z)} = \pm \frac{1}{2}\hbar ,$$

hence we get for a z-component of spin-related magnetic moment

$$\mu^{(z)}_{
m spin}\,=\,\pm\,\mu_B$$
 .

Spin magnetic moment (2)

Practical evaluation of spin magnetic moment of electrons in a solid:

$$\mu_{\rm spin}^{(z)} = -\frac{\mu_B}{\pi} \, {\rm Im} \, {\rm Tr} \, \int_{-\infty}^{E_F} {\rm d}E \int {\rm d}^3 r \beta \, \sigma_z \, G(\mathbf{r}, \mathbf{r}, E) \ ,$$

 σ_z is the *z*-component of a 4 imes 4 matrix vector $I_2 \otimes {m \sigma}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Free Fe clusters — ground-state magnetic properties

Magnetism of Fe atom

Magnetic properties of atoms are governed by Hund rules

Electron configuration: $3d^64s^2$

 \bigcirc

- \blacktriangleright Spin magnetic moment: $\mu_{\rm spin}\,=\,4\,\mu_B$
 - First Hund rule: Total atomic spin quantum number $S = \sum m_s$ is maximum (as long as it is compatible with Pauli exclusion principle)
- \blacktriangleright Orbital magnetic moment: $\mu_{\rm orb}~=~2\,\mu_B$
 - ▶ Second Hund rule: Total atomic orbital quantum number $L = \sum m_{\ell}$ is maximum (as long as it is compatible with Pauli exclusion principle and first Hund rule)

Magnetism of Fe atom

Magnetic properties of atoms are governed by Hund rules

Electron configuration: $3d^64s^2$

- Spin magnetic moment: $\mu_{\rm spin} = 4 \, \mu_B$
 - First Hund rule: Total atomic spin quantum number $S = \sum m_s$ is maximum (as long as it is compatible with Pauli exclusion principle)
- \blacktriangleright Orbital magnetic moment: $\mu_{\rm orb}~=~2\,\mu_B$
 - ▶ Second Hund rule: Total atomic orbital quantum number $L = \sum m_{\ell}$ is maximum (as long as it is compatible with Pauli exclusion principle and first Hund rule)

Magnetism of Fe atom

Magnetic properties of atoms are governed by Hund rules

Electron configuration: $3d^64s^2$

- Spin magnetic moment: $\mu_{\rm spin} = 4 \, \mu_B$
 - First Hund rule: Total atomic spin quantum number $S = \sum m_s$ is maximum (as long as it is compatible with Pauli exclusion principle)
- \blacktriangleright Orbital magnetic moment: $\mu_{\rm orb}~=~2\,\mu_B$
 - Second Hund rule: Total atomic orbital quantum number $L = \sum m_{\ell}$ is maximum (as long as it is compatible with Pauli exclusion principle and first Hund rule)

Generally: Magnetism is suppressed in the bulk (with respect to atomic case)

- Spin magnetic moment is $\mu_{
 m spin} pprox 2.2 \ \mu_B$ per atom
- Orbital magnetic moment is quenched (outright zero in non-relativistic case)
 - Intuitively: Electron are not free to orbit around atoms
 - ▶ Relativistic effect: The quenched orbital moment is partially restored by *LS* coupling ($\mu_{orb} \approx 0.05 \mu_B$ per atom)

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- Generally: Magnetism is suppressed in the bulk (with respect to atomic case)
 - \blacktriangleright Spin magnetic moment is $\mu_{\rm spin}\approx 2.2~\mu_B$ per atom
 - Orbital magnetic moment is quenched (outright zero in non-relativistic case)
 - Intuitively: Electron are not free to orbit around atoms
 - ▶ Relativistic effect: The quenched orbital moment is partially restored by *LS* coupling ($\mu_{orb} \approx 0.05 \mu_B$ per atom)

- Generally: Magnetism is suppressed in the bulk (with respect to atomic case)
 - \blacktriangleright Spin magnetic moment is $\mu_{\rm spin}\approx 2.2~\mu_B$ per atom
 - Orbital magnetic moment is quenched (outright zero in non-relativistic case)
 - Intuitively: Electron are not free to orbit around atoms
 - ▶ Relativistic effect: The quenched orbital moment is partially restored by *LS* coupling ($\mu_{orb} \approx 0.05 \mu_B$ per atom)

- Generally: Magnetism is suppressed in the bulk (with respect to atomic case)
 - Spin magnetic moment is $\mu_{
 m spin} pprox 2.2~\mu_B$ per atom
 - Orbital magnetic moment is quenched (outright zero in non-relativistic case)
 - Intuitively: Electron are not free to orbit around atoms
 - ▶ Relativistic effect: The quenched orbital moment is partially restored by *LS* coupling ($\mu_{orb} \approx 0.05 \mu_B$ per atom)

- Generally: Magnetism is suppressed in the bulk (with respect to atomic case)
 - \blacktriangleright Spin magnetic moment is $\mu_{\rm spin}\approx 2.2~\mu_B$ per atom
 - Orbital magnetic moment is quenched (outright zero in non-relativistic case)
 - Intuitively: Electron are not free to orbit around atoms
 - ▶ Relativistic effect: The quenched orbital moment is partially restored by *LS* coupling ($\mu_{orb} \approx 0.05 \mu_B$ per atom)

Surfaces are magnetism-friendly

- Atoms at surfaces exhibit some atomic-like characteristics
 - ▶ Spin magnetic moment is larger than in bulk; for Fe it is $\mu_{\rm spin} \approx 2.5$ -3.0 μ_B per atom
 - ▶ The orbital magnetic moment is increased by an even larger percentage, $\mu_{\rm orb} \approx$ 0.07–0.12 μ_B per atom

Surfaces are magnetism-friendly

 Atoms at surfaces exhibit some atomic-like characteristics

- ▶ Spin magnetic moment is larger than in bulk; for Fe it is $\mu_{\rm spin} \approx 2.5$ -3.0 μ_B per atom
- ▶ The orbital magnetic moment is increased by an even larger percentage, $\mu_{\rm orb} \approx$ 0.07–0.12 μ_B per atom

Surfaces are magnetism-friendly

 Atoms at surfaces exhibit some atomic-like characteristics

- ▶ Spin magnetic moment is larger than in bulk; for Fe it is $\mu_{\rm spin} \approx 2.5$ –3.0 μ_B per atom
- ▶ The orbital magnetic moment is increased by an even larger percentage, $\mu_{\rm orb} \approx$ 0.07–0.12 μ_B per atom
Magnetism of iron: summary

(clusters go in between)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Properties of clusters should display traces of surface and bulk trends

Magnetism of iron: summary

(clusters go in between)

Properties of clusters should display traces of surface and bulk trends

Why all the fuss with μ_{orb} ?

• $\mu_{\rm orb}$ is small

Why all the fuss with μ_{orb} ?

• $\mu_{\rm orb}$ is small but important !

- It is a manifestation of spin-orbit coupling, which is the mechanism behind the magnetocrystalline anisotropy
- Under certain assumptions, magnetocrystalline anisotropy energy (MAE) can be estimated as

$$\Delta E_{\mathrm{MAE}} = \mathrm{const} imes \left(oldsymbol{\mu}_{\mathrm{orb}}^{\parallel} - oldsymbol{\mu}_{\mathrm{orb}}^{\perp}
ight)$$

where $\mu_{\rm orb}^{\parallel}$ and $\mu_{\rm orb}^{\perp}$ are orbital magnetic moments for two perpendicular directions of the magnetization **M**

System we study

 Free spherical-like Fe clusters with geometry taken as if cut from a bulk *bcc* Fe crystal

System we study

- Free spherical-like Fe clusters with geometry taken as if cut from a bulk *bcc* Fe crystal
- Cluster size between 9 atoms (1 coordination shell) and 89 atoms (7 coordinations shells)

shells	atoms	radius [Å]
1	9	2.49
2	15	2.87
3	27	4.06
4	51	4.76
5	59	4.97
6	65	5.74
7	89	6.25

Lowering of symmetry

 Magnetization and spin-orbit coupling lower the symmetry of our systems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Atoms belonging to the same coordination shell may be inequivalent
- Classes of equivalent atoms depend on the direction of magnetization M

Lowering of symmetry

- Magnetization and spin-orbit coupling lower the symmetry of our systems
- Atoms belonging to the same coordination shell may be inequivalent
- Classes of equivalent atoms depend on the direction of magnetization M

Lowering of symmetry

- Magnetization and spin-orbit coupling lower the symmetry of our systems
- Atoms belonging to the same coordination shell may be inequivalent
- Classes of equivalent atoms depend on the direction of magnetization M

L(S)DA scheme

 cluster calculations done in real space via a fully-relativistic spin-polarized multiple-scattering technique

- crystal surfaces treated as 2D finite slabs (fully-relativistic spin-polarized TB-KKR method)
- spherical ASA approximation
- empty spheres put around the clusters in order to account for spilling of the electron charge into vacuum

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- L(S)DA scheme
- cluster calculations done in real space via a fully-relativistic spin-polarized multiple-scattering technique
- crystal surfaces treated as 2D finite slabs (fully-relativistic spin-polarized TB-KKR method)
- spherical ASA approximation
- empty spheres put around the clusters in order to account for spilling of the electron charge into vacuum

- L(S)DA scheme
- cluster calculations done in real space via a fully-relativistic spin-polarized multiple-scattering technique
- crystal surfaces treated as 2D finite slabs (fully-relativistic spin-polarized TB-KKR method)
- spherical ASA approximation
- empty spheres put around the clusters in order to account for spilling of the electron charge into vacuum

- L(S)DA scheme
- cluster calculations done in real space via a fully-relativistic spin-polarized multiple-scattering technique
- crystal surfaces treated as 2D finite slabs (fully-relativistic spin-polarized TB-KKR method)
- spherical ASA approximation
- empty spheres put around the clusters in order to account for spilling of the electron charge into vacuum

- L(S)DA scheme
- cluster calculations done in real space via a fully-relativistic spin-polarized multiple-scattering technique
- crystal surfaces treated as 2D finite slabs (fully-relativistic spin-polarized TB-KKR method)
- spherical ASA approximation
- empty spheres put around the clusters in order to account for spilling of the electron charge into vacuum

Atomic-like features present in DOS of clusters

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

Atomic-like features present in DOS of clusters

Atomic-like features present in DOS of clusters

- Atomic-like features present in DOS of clusters
- DOS in the center of clusters approaches the bulk quite slowly

Magnetic profiles of clusters

What do we mean by that

Local magnetic moments:

 μ_{spin} and μ_{orb} can be attributed to individual sites

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Magnetic profiles of clusters

What do we mean by that

Local magnetic moments:

 $\mu_{\rm spin}$ and $\mu_{\rm orb}$ can be attributed to individual sites by performing the integrations

$$\mu_{\rm spin} \, \sim \, \int {\rm d}^3 r \, \beta \, \sigma_z \, G({\bf r},{\bf r},E)$$

and

$$\mu_{
m orb} ~\sim ~\int {
m d}^3 r ~eta ~ L_z ~ G({f r},{f r},{f E})$$

over atomic spheres

Magnetic profiles of clusters

What do we mean by that

Local magnetic moments:

 $\mu_{\rm spin}$ and $\mu_{\rm orb}$ can be attributed to individual sites by performing the integrations

$$\mu_{
m spin} ~\sim~ \int {
m d}^3 r ~eta ~\sigma_z ~G({f r},{f r},{f E})$$

and

$$\mu_{\rm orb} ~\sim~ \int {\rm d}^3 r ~\beta \, L_z ~G({\bf r},{\bf r},E)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

over atomic spheres

- Enhancements and oscillations all around
- $\mu_{\rm spin}$ does not depend on the direction of **M**
- µ_{orb} depends on the direction of M
 - for inequivalent atoms of the same coordination sphere µ_{orb} differs
- µ_{orb} averaged over coordination spheres does not depend on the direction of M

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

- Enhancements and oscillations all around
- $\mu_{\rm spin}$ does not depend on the direction of **M**
- µ_{orb} depends on the direction of M
 - for inequivalent atoms of the same coordination sphere µ_{orb} differs
- µ_{orb} averaged over coordination spheres does not depend on the direction of M

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

- Enhancements and oscillations all around
- $\mu_{\rm spin}$ does not depend on the direction of **M**
- µ_{orb} depends on the direction of M
 - for inequivalent atoms of the same coordination sphere μ_{orb} differs
- µ_{orb} averaged over coordination spheres does not depend on the direction of M

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- Enhancements and oscillations all around
- $\mu_{\rm spin}$ does not depend on the direction of **M**
- µ_{orb} depends on the direction of M
 - for inequivalent atoms of the same coordination sphere μ_{orb} differs
- µ_{orb} averaged over coordination spheres does not depend on the direction of M

- take free iron cluster of 89 atoms
- drill a hole into this cluster
- inspect µ_{spin} and µ_{orb} around you and compare them with what you see beneath a crystal surface
- explore various "crystallographic directions"

- take free iron cluster of 89 atoms
- drill a hole into this cluster
- inspect µ_{spin} and µ_{orb} around you and compare them with what you see beneath a crystal surface
- explore various "crystallographic directions"

SQC.

- take free iron cluster of 89 atoms
- drill a hole into this cluster
- inspect µ_{spin} and µ_{orb} around you and compare them with what you see beneath a crystal surface

- take free iron cluster of 89 atoms
- drill a hole into this cluster
- inspect µ_{spin} and µ_{orb} around you and compare them with what you see beneath a crystal surface
- explore various "crystallographic directions"

DAG

Clusters vers. surfaces: $\mu_{\rm spin}$

▲ロ▶ ▲御▶ ▲恵▶ ▲恵▶ 三直 めんで

Clusters vers. surfaces: $\mu_{\rm spin}$

▲ロ▶ ▲御▶ ▲恵▶ ▲恵▶ 三直 めんで

Clusters vers. surfaces: $\mu_{\rm orb}$

Clusters vers. surfaces: $\mu_{\rm orb}$

▲口▶▲御▶▲臣▶▲臣▶ 臣 のQ@

Dependence of $\mu_{
m spin}$ on $\textit{N}_{
m eff}$

Effective coordination number: for a *bcc* crystal one defines

 $N_{\mathrm{eff}} = N_1 + 0.25 \times N_2$,

where N_1 is number of 1^{st} neighbors and N_2 is number of 2^{nd} neighbors.

[D. Tománek et al. (1983); J. Zhao et al. (1995)]

For orbital moment μ_{orb} , a similar dependence can be observed but with much larger "fluctuations".

Dependence of $\mu_{ m spin}$ on $\textit{N}_{ m eff}$

Effective coordination number: for a *bcc* crystal one defines

 $N_{\mathrm{eff}} = N_1 + 0.25 \times N_2$,

where N_1 is number of 1^{st} neighbors and N_2 is number of 2^{nd} neighbors.

[D. Tománek et al. (1983); J. Zhao et al. (1995)]

For orbital moment μ_{orb} , a similar dependence can be observed but with much larger "fluctuations".

Dependence of $\mu_{ m spin}$ on $\textit{N}_{ m eff}$

For orbital moment μ_{orb} , a similar dependence can be observed but with much larger "fluctuations".
Dependence of $\mu_{ m spin}$ on $\textit{N}_{ m eff}$

Effective coordination number: for a *bcc* crystal one defines

 $N_{\mathrm{eff}} = N_1 + 0.25 \times N_2$,

where N_1 is number of 1^{st} neighbors and N_2 is number of 2^{nd} neighbors.

[D. Tománek et al. (1983); J. Zhao et al. (1995)]

For orbital moment μ_{orb} , a similar dependence can be observed but with much larger "fluctuations".

Dependence of $\mu_{ m spin}$ on $\textit{N}_{ m eff}$

Effective coordination number: for a *bcc* crystal one defines

 $N_{\mathrm{eff}} = N_1 + 0.25 \times N_2$,

where N_1 is number of 1^{st} neighbors and N_2 is number of 2^{nd} neighbors.

[D. Tománek et al. (1983); J. Zhao et al. (1995)]

For orbital moment μ_{orb} , a similar dependence can be observed but with much larger "fluctuations".

Dependence of $\mu_{ m spin}$ on $\textit{N}_{ m eff}$

Effective coordination number: for a *bcc* crystal one defines

 $N_{\mathrm{eff}} = N_1 + 0.25 \times N_2$,

where N_1 is number of 1^{st} neighbors and N_2 is number of 2^{nd} neighbors.

[D. Tománek et al. (1983); J. Zhao et al. (1995)]

For orbital moment μ_{orb} , a similar dependence can be observed but with much larger "fluctuations".

- \blacktriangleright In free clusters, μ_{spin} and μ_{orb} are enhanced at atoms close to the cluster surface
- Oscillations both in µ_{spin} and in µ_{orb} are a general feature of magnetic profiles.
 These oscillations are more pronounced in clusters than at crystal surfaces.
- $\blacktriangleright\ \mu_{\rm orb}$ at *individual* atoms strongly depends on the direction of ${\bf M}$

However, the anisotropy in $\mu_{\rm orb}$ averaged over whole coordination spheres is very small

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

 $\blacktriangleright~\mu_{\rm spin}$ in clusters and at crystal surfaces depends linearly on $N_{\rm eff}$

- \blacktriangleright In free clusters, μ_{spin} and μ_{orb} are enhanced at atoms close to the cluster surface
- Oscillations both in µ_{spin} and in µ_{orb} are a general feature of magnetic profiles.
 These oscillations are more pronounced in clusters than at crystal surfaces.
- $\blacktriangleright\ \mu_{\rm orb}$ at *individual* atoms strongly depends on the direction of ${\bf M}$

However, the anisotropy in $\mu_{\rm orb}$ averaged over whole coordination spheres is very small

 $\blacktriangleright\ \mu_{\rm spin}$ in clusters and at crystal surfaces depends linearly on $N_{\rm eff}$

- \blacktriangleright In free clusters, μ_{spin} and μ_{orb} are enhanced at atoms close to the cluster surface
- Oscillations both in µ_{spin} and in µ_{orb} are a general feature of magnetic profiles.
 These oscillations are more pronounced in clusters than at crystal surfaces.
- $\blacktriangleright\ \mu_{orb}$ at *individual* atoms strongly depends on the direction of M

However, the anisotropy in $\mu_{\rm orb}$ averaged over whole coordination spheres is very small

 $\blacktriangleright\ \mu_{\rm spin}$ in clusters and at crystal surfaces depends linearly on $N_{\rm eff}$

- \blacktriangleright In free clusters, μ_{spin} and μ_{orb} are enhanced at atoms close to the cluster surface
- Oscillations both in µ_{spin} and in µ_{orb} are a general feature of magnetic profiles.
 These oscillations are more pronounced in clusters than at crystal surfaces.
- $\blacktriangleright\ \mu_{orb}$ at *individual* atoms strongly depends on the direction of M

However, the anisotropy in $\mu_{\rm orb}$ averaged over whole coordination spheres is very small

 $\blacktriangleright\ \mu_{spin}$ in clusters and at crystal surfaces depends linearly on N_{eff}

Magnetism of free and supported clusters

Free and supported clusters

- How do the magnetic properties change if clusters are deposited on a substrate ?
- Take analogous systems (identical sizes, identical geometries) and have a look

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Focus rather on the trends than on particular values

Free and supported clusters

- How do the magnetic properties change if clusters are deposited on a substrate ?
- Take analogous systems (identical sizes, identical geometries) and have a look

Focus rather on the trends than on particular values

Free and supported clusters

- How do the magnetic properties change if clusters are deposited on a substrate ?
- Take analogous systems (identical sizes, identical geometries) and have a look

Focus rather on the trends than on particular values

Impurity Green function method

- Calculate electronic structure of the "host" system (clean surface)
 - ► Tight-binding or screened KKR
- Supported clusters are treated as a perturbation to the clean surface and the
 - Green's function of the new system (cluster plus substrate) is obtained by solving the Dyson equation.

• Atomic sphere approximation (ASA), $\ell_{max}=2$

Focus on planar Fe_N on Ni(001) and Co_N clusters on Au(111)

▲日▼▲□▼▲□▼▲□▼ □ ののの

Impurity Green function method

- Calculate electronic structure of the "host" system (clean surface)
 - Tight-binding or screened KKR
- Supported clusters are treated as a perturbation to the clean surface and the
 - Green's function of the new system (cluster plus substrate) is obtained by solving the Dyson equation.

• Atomic sphere approximation (ASA), $\ell_{max}=2$

Focus on planar Fe_N on Ni(001) and Co_N clusters on Au(111)

▲日▼▲□▼▲□▼▲□▼ □ ののの

Impurity Green function method

- Calculate electronic structure of the "host" system (clean surface)
 - Tight-binding or screened KKR
- Supported clusters are treated as a perturbation to the clean surface and the
 - Green's function of the new system (cluster plus substrate) is obtained by solving the Dyson equation.

• Atomic sphere approximation (ASA), $\ell_{max}=2$

Focus on planar Fe_N on Ni(001) and Co_N clusters on Au(111)

Impurity Green function method

- Calculate electronic structure of the "host" system (clean surface)
 - Tight-binding or screened KKR
- Supported clusters are treated as a perturbation to the clean surface and the
 - Green's function of the new system (cluster plus substrate) is obtained by solving the Dyson equation.

 \blacktriangleright Atomic sphere approximation (ASA), $\ell_{max}{=}2$

Focus on planar Fe_N on Ni(001) and Co_N clusters on Au(111)

Impurity Green function method

- Calculate electronic structure of the "host" system (clean surface)
 - Tight-binding or screened KKR
- Supported clusters are treated as a perturbation to the clean surface and the
 - Green's function of the new system (cluster plus substrate) is obtained by solving the Dyson equation.

• Atomic sphere approximation (ASA), $\ell_{max}=2$

Focus on planar Fe_N on Ni(001) and Co_N clusters on Au(111)

Impurity Green function method

- Calculate electronic structure of the "host" system (clean surface)
 - Tight-binding or screened KKR
- Supported clusters are treated as a perturbation to the clean surface and the
 - Green's function of the new system (cluster plus substrate) is obtained by solving the Dyson equation.

- Atomic sphere approximation (ASA), $\ell_{max}=2$
- Focus on planar Fe_N on Ni(001) and Co_N clusters on Au(111)

Shapes of clusters (free or supported)

Only nearest-neighbor substrate atoms are shown.

э

Average magnetic moments

Supported clusters: nearly monotonous decay of $\mu_{\rm spin}$ and $\mu_{\rm orb}$ with N

æ

Average magnetic moments

- Supported clusters: nearly monotonous decay of μ_{spin} and μ_{orb} with N
- Free clusters: quasi-oscillations, quite large amplitides

(日)

э

Average magnetic moments

- Supported clusters: nearly monotonous decay of μ_{spin} and μ_{orb} with N
- Free clusters: quasi-oscillations, quite large amplitides
- µ_{orb} of free Co clusters does not follow the herd

э

イロト イポト イヨト イヨト

Effect of coordination on $\mu_{\rm spin}$

・ロト ・聞ト ・ヨト ・ヨト

æ

Effect of coordination on $\mu_{ m spin}$

• $\mu_{\rm spin}$ decreases if coordination number increases

・ロト ・聞ト ・ヨト ・ヨト

æ

Effect of coordination on $\mu_{\rm spin}$

- μ_{spin} decreases if coordination number increases
- Big scatter around the linear dependence for small planar free clusters

Comparison between free and supported clusters: summary

- Substrate acts as an adult supervisor for the free clusters
 - It suppresses the tendency of magnetic moments to oscillate with cluster size
- ► It makes µ_{spin} to depend linearly on the coordination number
 ► For free clusters, this trend appears only for spherical and/or larger clusters

Further reading: Šipr *et al.* JPCM **19**, 096203 (2007) Šipr *et al.* Cent. Eur. J. Phys. **7**, 257 (2009)

Comparison between free and supported clusters: summary

- Substrate acts as an adult supervisor for the free clusters
 - It suppresses the tendency of magnetic moments to oscillate with cluster size
- It makes μ_{spin} to depend linearly on the coordination number
 - For free clusters, this trend appears only for spherical and/or larger clusters

Further reading: Šipr *et al.* JPCM **19**, 096203 (2007) Šipr *et al.* Cent. Eur. J. Phys. **7**, 257 (2009) Comparison between free and supported clusters: summary

- Substrate acts as an adult supervisor for the free clusters
 - It suppresses the tendency of magnetic moments to oscillate with cluster size
- \blacktriangleright It makes $\mu_{\rm spin}$ to depend linearly on the coordination number
 - For free clusters, this trend appears only for spherical and/or larger clusters

Further reading: Šipr *et al.* JPCM **19**, 096203 (2007) Šipr *et al.* Cent. Eur. J. Phys. **7**, 257 (2009)

Magnetism of clusters for $T \neq 0$

Finite temperature magnetism

For localized moments, finite temperature magnetism can be described by a classical Heisenberg hamiltonian

$$H_{\mathrm{eff}} \;=\; - \; \sum_{i
eq j} J_{ij} \, \mathbf{e}_i \cdot \mathbf{e}_j$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Mapping DFT onto Heisenberg

Comparing energy associated with infinitesimal rotations of local magnetic moments \implies

$$J_{ij} \,=\, - \, rac{1}{4\pi} \, {
m Im} \int^{E_F} \! \mathrm{d}E \; {
m Tr} \, \left[\, \left(\, t_{i\uparrow}^{-1} - t_{i\downarrow}^{-1}
ight) \, au_{\uparrow}^{ij} \left(\, t_{j\uparrow}^{-1} - t_{j\downarrow}^{-1}
ight) \, au_{\downarrow}^{ji} \,
ight]$$

[Liechtenstein et al. (1986)]

Valid only if magnetism can be described by localized magnetic moments (fine for Fe)

Mapping DFT onto Heisenberg

Comparing energy associated with infinitesimal rotations of local magnetic moments \implies

$$J_{ij} \,=\, - \, rac{1}{4\pi} \, {
m Im} \int^{E_F} \! {
m d} E \; {
m Tr} \, \left[\, (\, t_{i\uparrow}^{-1} - t_{i\downarrow}^{-1}) \, au_{\uparrow}^{ij} \, (\, t_{j\uparrow}^{-1} - t_{j\downarrow}^{-1}) \, au_{\downarrow}^{ji} \,
ight]$$

[Liechtenstein et al. (1986)]

Valid only if magnetism can be described by localized magnetic moments (fine for Fe)

From J_{ij} to M(T)

► Mean magnetization M(T) of a system described by a classical Heisenberg hamiltonian is

$$M(T) = \frac{\sum_{k} M_{k} \exp(-\frac{E_{k}}{k_{B}T})}{\sum_{k} \exp(-\frac{E_{k}}{k_{B}T})}$$

- M_k is the magnetization of the system for a particular configuration k of the directions of spins E_k is the energy of configuration k
- Practical evaluation: Monte Carlo method with the importance sampling Metropolis algorithm
- For bulk Fe, this procedure yields finite-temperature results that are in a good agreement with experiment [Pajda et al. (2001)]

From J_{ij} to M(T)

▶ Mean magnetization M(T) of a system described by a classical Heisenberg hamiltonian is

$$M(T) = \frac{\sum_{k} M_{k} \exp(-\frac{E_{k}}{k_{B}T})}{\sum_{k} \exp(-\frac{E_{k}}{k_{B}T})}$$

- M_k is the magnetization of the system for a particular configuration k of the directions of spins E_k is the energy of configuration k
- Practical evaluation: Monte Carlo method with the importance sampling Metropolis algorithm
- For bulk Fe, this procedure yields finite-temperature results that are in a good agreement with experiment [Pajda et al. (2001)]

From J_{ij} to M(T)

▶ Mean magnetization M(T) of a system described by a classical Heisenberg hamiltonian is

$$M(T) = \frac{\sum_{k} M_{k} \exp(-\frac{E_{k}}{k_{B}T})}{\sum_{k} \exp(-\frac{E_{k}}{k_{B}T})}$$

- M_k is the magnetization of the system for a particular configuration k of the directions of spins E_k is the energy of configuration k
- Practical evaluation: Monte Carlo method with the importance sampling Metropolis algorithm
- ► For bulk Fe, this procedure yields finite-temperature results that are in a good agreement with experiment [Pajda *et al.* (2001)]

J_{ij} in bulk and in clusters

Atom i is fixed, atom j scans coordination shells around i

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

- ▶ Oscillatory decay of *J*_{ij} with distance
- ► J_{ij} for a given distance differs a lot between clusters and crystals

J_{ij} in bulk and in clusters

Atom i is fixed, atom j scans coordination shells around i

- Oscillatory decay of J_{ij} with distance
- J_{ij} for a given distance differs a lot between clusters and crystals

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ
J_{ij} in bulk and in clusters

Atom i is fixed, atom j scans coordination shells around i

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- ▶ Oscillatory decay of *J*_{ij} with distance
- ► J_{ij} for a given distance differs a lot between clusters and crystals

J_{ij} in bulk and in clusters

Atom i is fixed, atom j scans coordination shells around i

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Oscillatory decay of J_{ij} with distance
- J_{ij} for a given distance differs a lot between clusters and crystals

Total strength with which one spin (at site i) is held in its direction:

Energy needed to flip the spin of atom i while keeping all the remaining spins collinear:

$$J_i = \sum_{j \neq i} J_{ij}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• Mild differences in J_{ij} translate into large differences in $\sum_i J_{ij}$

• Mild differences in J_{ij} translate into large differences in $\sum_i J_{ij}$

• Mild differences in J_{ij} translate into large differences in $\sum_i J_{ij}$

• Mild differences in J_{ij} translate into large differences in $\sum_i J_{ij}$

• Mild differences in J_{ij} translate into large differences in $\sum_i J_{ij}$

- Mild differences in J_{ij} translate into large differences in $\sum_i J_{ij}$
- No systematics in cluster size, no systematics in the position of atom within a cluster

[Bulk M(T) curve was extrapolated to calculated T_C]

 \blacktriangleright M(T) curves are more shallow in clusters than in bulk

- M(T) curves are more shallow in clusters than in bulk
- Small clusters more shallow M(T) curves than large clusters

- M(T) curves are more shallow in clusters than in bulk
- Small clusters more shallow M(T) curves than large clusters

[Bulk M(T) curve was extrapolated to calculated T_C]

- M(T) curves are more shallow in clusters than in bulk
- Small clusters more shallow M(T) curves than large clusters

M as function of cluster size

M as function of cluster size

Dependence of *M* on cluster size does not really vary with *T* for low ("experimental") temperatures

<ロ> <問> <問> < 回> < 回>

э

M as function of cluster size

- Dependence of *M* on cluster size does not really vary with *T* for low ("experimental") temperatures
- ► For large *T*, magnetization of large clusters is significantly reduced

Dependence of T_c on cluster size

◆□> ◆□> ◆三> ◆三> ・三 のへで

 Critical temperature T_c defined as the inflection point of M(T) curves (no phase transition for finite systems)

Dependence of T_c on cluster size

 Critical temperature T_c defined as the inflection point of M(T) curves (no phase transition for finite systems)

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

T_c oscillates with cluster size

Dependence of T_c on cluster size

- Critical temperature T_c defined as the inflection point of M(T) curves (no phase transition for finite systems)
- T_c oscillates with cluster size
- Proper cluster-adjusted J_{ij} have to be taken into account

Expectations:

outer shells have smaller coordination numbers than inner shells

Expectations:

outer shells have smaller coordination numbers than inner shells $\Rightarrow M$ in outer shells should decay more quickly with Tthan M of inner shells

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Projecting M of a shell onto the direction of the total M of the 89-atom cluster

(Projections are normalized to T=0)

Not monotonous in order of shells

Although *M* of outer shells usually decays faster than *M* of inner shells, no systematics can be found.

Projecting M of a shell onto the direction of the total M of the 89-atom cluster

◆□> ◆□> ◆三> ◆三> ・三 のへで

(Projections are normalized to T=0)

Not monotonous in order of shells

Although M of outer shells usually decays faster than M of inner shells, no systematics can be found.

Projecting M of a shell onto the direction of the total M of the 89-atom cluster

(Projections are normalized to T=0)

- Not monotonous in order of shells
- Although M of outer shells usually decays faster than M of inner shells, no systematics can be found.

Magnetic profile for $T \neq 0$

Cluster of 89 atoms (7 coordination shells)

- Magnetic profile gets more flat if temperature increases
- ► M of outermost layers is similar in magnitude to M of inner layers even for large T (i.e., no drastic decrease of surface M

Magnetic profile for $T \neq 0$

Cluster of 89 atoms (7 coordination shells)

Magnetic profile gets more flat if temperature increases

 M of outermost layers is similar in magnitude to M of inner layers even for large T (i.e., no drastic decrease of surface M)

Magnetic profile for $T \neq 0$

Cluster of 89 atoms (7 coordination shells)

- Magnetic profile gets more flat if temperature increases
- M of outermost layers is similar in magnitude to M of inner layers even for large T (i.e., no drastic decrease of surface M)

- ► Exchange coupling constants J_{ij} in clusters differ from the bulk, with no obvious systematics (⇒ one has to calculate them...)
- ▶ Magnetization M(T) curves are more shallow from small clusters than for large clusters
- Magnetization of the outer shells decreases with temperature more quickly than magnetizatin of inner shells (usually...)

Critical temperature T_c oscillates with cluster size

- ► Exchange coupling constants J_{ij} in clusters differ from the bulk, with no obvious systematics (⇒ one has to calculate them...)
- ► Magnetization M(T) curves are more shallow from small clusters than for large clusters
- Magnetization of the outer shells decreases with temperature more quickly than magnetizatin of inner shells (usually...)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Critical temperature T_c oscillates with cluster size

- ► Exchange coupling constants J_{ij} in clusters differ from the bulk, with no obvious systematics (⇒ one has to calculate them...)
- ► Magnetization M(T) curves are more shallow from small clusters than for large clusters
- Magnetization of the outer shells decreases with temperature more quickly than magnetizatin of inner shells (usually...)

• Critical temperature T_c oscillates with cluster size

- ► Exchange coupling constants J_{ij} in clusters differ from the bulk, with no obvious systematics (⇒ one has to calculate them...)
- ► Magnetization M(T) curves are more shallow from small clusters than for large clusters
- Magnetization of the outer shells decreases with temperature more quickly than magnetizatin of inner shells (usually...)

• Critical temperature T_c oscillates with cluster size

X-ray absorption spectroscopy of clusters

X-rays go in, x-rays go out, absorption coefficient is measured as a function the energy of the incoming x-rays

- Most of the absorption goes on account of the photoelectric effect on core electrons
- By tuning the energy of incoming x-rays, electrons from one core level only participate

- Chemical selectivity
- Dipole selection rule
 - Angular-momentum selectivity

 X-rays go in, x-rays go out, absorption coefficient is measured as a function the energy of the incoming x-rays

- Most of the absorption goes on account of the photoelectric effect on core electrons
- By tuning the energy of incoming x-rays, electrons from one core level only participate

- Chemical selectivity
- Dipole selection rule
 - Angular-momentum selectivity

 X-rays go in, x-rays go out, absorption coefficient is measured as a function the energy of the incoming x-rays

- Most of the absorption goes on account of the photoelectric effect on core electrons
- By tuning the energy of incoming x-rays, electrons from one core level only participate

- Chemical selectivity
- Dipole selection rule
 - Angular-momentum selectivity

 X-rays go in, x-rays go out, absorption coefficient is measured as a function the energy of the incoming x-rays

- Most of the absorption goes on account of the photoelectric effect on core electrons
- By tuning the energy of incoming x-rays, electrons from one core level only participate

- Chemical selectivity
- Dipole selection rule
 - Angular-momentum selectivity
X-ray absorption spectroscopy HOWTO

 X-rays go in, x-rays go out, absorption coefficient is measured as a function the energy of the incoming x-rays

- Most of the absorption goes on account of the photoelectric effect on core electrons
- By tuning the energy of incoming x-rays, electrons from one core level only participate

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Chemical selectivity
- Dipole selection rule
 - Angular-momentum selectivity

X-ray absorption spectroscopy HOWTO

 X-rays go in, x-rays go out, absorption coefficient is measured as a function the energy of the incoming x-rays

- Most of the absorption goes on account of the photoelectric effect on core electrons
- By tuning the energy of incoming x-rays, electrons from one core level only participate

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Chemical selectivity
- Dipole selection rule
 - Angular-momentum selectivity

XMCD ноwто

XMCD (X-ray Magnetic Circular Dichroism): sample is magnetized, measure the difference between absorption of left and right circularly polarized x-rays

 Helicity of the incoming photons is parallel or antiparallel with the cluster magnetization M (coincides with the [001] direction in the parental crystal)

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

XMCD ноwто

XMCD (X-ray Magnetic Circular Dichroism): sample is magnetized, measure the difference between absorption of left and right circularly polarized x-rays

 Helicity of the incoming photons is parallel or antiparallel with the cluster magnetization M (coincides with the [001] direction in the parental crystal)

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- XMCD spectroscopy probes the magnetic properties of materials
- \blacktriangleright Through the sum rules, XMCD can inform about μ_{spin} and μ_{orb} separately
 - ▶ $L_{2,3}$ edge: sum rules give access to the *d* components of μ_{spin} and μ_{orb} (for transition metals, that's what we want)

- K edge: sum rule gives access to the p component of $\mu_{
 m orb}$
- Employing sum rules on experimental data may require substantial theoretical input
- Theoretical modelling should provide an intuitive understanding of what is going on

- XMCD spectroscopy probes the magnetic properties of materials
- \blacktriangleright Through the sum rules, XMCD can inform about μ_{spin} and μ_{orb} separately
 - L_{2,3} edge: sum rules give access to the *d* components of μ_{spin} and μ_{orb} (for transition metals, that's what we want)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- K edge: sum rule gives access to the p component of $\mu_{
 m orb}$
- Employing sum rules on experimental data may require substantial theoretical input
- Theoretical modelling should provide an intuitive understanding of what is going on

- XMCD spectroscopy probes the magnetic properties of materials
- Through the sum rules, XMCD can inform about μ_{spin} and μ_{orb} separately
 - L_{2,3} edge: sum rules give access to the *d* components of μ_{spin} and μ_{orb} (for transition metals, that's what we want)

- K edge: sum rule gives access to the p component of $\mu_{
 m orb}$
- Employing sum rules on experimental data may require substantial theoretical input
- Theoretical modelling should provide an intuitive understanding of what is going on

- XMCD spectroscopy probes the magnetic properties of materials
- Through the sum rules, XMCD can inform about μ_{spin} and μ_{orb} separately
 - ► $L_{2,3}$ edge: sum rules give access to the *d* components of μ_{spin} and μ_{orb} (for transition metals, that's what we want)

- K edge: sum rule gives access to the p component of $\mu_{
 m orb}$
- Employing sum rules on experimental data may require substantial theoretical input
- Theoretical modelling should provide an intuitive understanding of what is going on

$L_{2,3}$ edge of magnetic TM systems

・ロト ・聞ト ・ヨト ・ヨト

æ

$L_{2,3}$ edge of magnetic TM systems

XMCD sum rules:

By adding, subtracting and dividing the peak areas, chemically-specific $\mu_{\rm spin}$, $\mu_{\rm orb}$ and $\mu_{\rm orb}/\mu_{\rm spin}$ can be obtained

(日) (部) (E) (E) (E)

Some more details

 Spectrum of cluster is a superposition of spectra at edges of individual atoms

► The spectra do not depend on the direction of M

- magnetic anisotropy in bcc-like Fe clusters is practically negligible
- average of $\mu_{\rm orb}$ over all atoms does not depend on M either

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Core hole neglected

Some more details

- Spectrum of cluster is a superposition of spectra at edges of individual atoms
- ► The spectra do not depend on the direction of M
 - magnetic anisotropy in bcc-like Fe clusters is practically negligible
 - \blacktriangleright average of $\mu_{\rm orb}$ over all atoms does not depend on ${\bf M}$ either

Core hole neglected

Some more details

- Spectrum of cluster is a superposition of spectra at edges of individual atoms
- ► The spectra do not depend on the direction of M
 - magnetic anisotropy in bcc-like Fe clusters is practically negligible
 - \blacktriangleright average of $\mu_{\rm orb}$ over all atoms does not depend on ${\bf M}$ either

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Core hole neglected

- No significant variation with cluster size
- Fine structure just after the L₃ white line — presence of truly discrete states (vaccum level is 5–8 eV above E_F)
- Smoothening of peaks for larger clusters

- No significant variation with cluster size
- Fine structure just after the L₃ white line — presence of truly discrete states (vaccum level is 5–8 eV above E_F)
- Smoothening of peaks for larger clusters

- No significant variation with cluster size
- Fine structure just after the L₃ white line — presence of truly discrete states (vaccum level is 5–8 eV above E_F)
- Smoothening of peaks for larger clusters

- Similar shape for clusters and for the bulk
- Peak *intensity* systematically decreases and peak *width* increases with increasing cluster size
- No systematic variations for areas of peaks (cluster magnetization oscillates with cluster size)
- Small yet distinct positive hump just after the main L₃ peak

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Similar shape for clusters and for the bulk
- Peak *intensity* systematically decreases and peak *width* increases with increasing cluster size
- No systematic variations for areas of peaks (cluster magnetization oscillates with cluster size)
- Small yet distinct positive hump just after the main L₃ peak

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Similar shape for clusters and for the bulk
- Peak *intensity* systematically decreases and peak *width* increases with increasing cluster size
- No systematic variations for areas of peaks (cluster magnetization oscillates with cluster size)
- Small yet distinct positive hump just after the main L₃ peak

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ のへで

- Similar shape for clusters and for the bulk
- Peak *intensity* systematically decreases and peak *width* increases with increasing cluster size
- No systematic variations for areas of peaks (cluster magnetization oscillates with cluster size)
- Small yet distinct positive hump just after the main L₃ peak

Fe(001) surface [Wu et al. PRL 71, 3581 (1993)]

Fe₂Cu₆ (001) multilayer [Guo et al PRB 50, 3861 (1994)]

・ロト ・ 一下・ ・ ヨト ・ 日 ・

3

Calculated XMCD of Fe surface or multilayers exhibit quite a pronounced fine structure at the Fe L_3 and L_2 edges.

Fe(001) surface [Wu et al. PRL 71, 3581 (1993)]

Fe₂Cu₆ (001) multilayer [Guo et al PRB 50, 3861 (1994)]

Calculated XMCD of Fe surface or multilayers exhibit quite a pronounced fine structure at the Fe L_3 and L_2 edges.

Calculated XMCD of clusters display no such fine structure.

Where have all the structures gone ?

Fe(001) surface [Wu et al. PRL 71, 3581 (1993)]

Fe₂Cu₆ (001) multilayer [Guo et al PRB 50, 3861 (1994)]

Calculated XMCD of Fe surface or multilayers exhibit quite a pronounced fine structure at the Fe L_3 and L_2 edges.

Calculated XMCD of clusters display no such fine structure.

Spectrum of the whole cluster is a superposition of signals from all individual atoms

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Spectrum of the whole cluster is a superposition of signals from all individual atoms

The wiggles in XMCD mutually cancel !

Spectrum of the whole cluster is a superposition of signals from all individual atoms

- Calculate the spectra theoretically
- Aply XMCD sum rules
- Compare µ_{spin} and µ_{orb} derived from XMCD spectra with moments calculated directly
- Upper integration boundary E_{cut} chosen so that there are exactly 10 electron states up to E_{cut} in the d band

- Calculate the spectra theoretically
- Aply XMCD sum rules
- Compare \(\mu_{spin}\) and \(\mu_{orb}\) derived from XMCD spectra with moments calculated directly
- Upper integration boundary E_{cut} chosen so that there are exactly 10 electron states up to E_{cut} in the d band

- Calculate the spectra theoretically
- Aply XMCD sum rules
- ► Compare µ_{spin} and µ_{orb} derived from XMCD spectra with moments calculated directly
- Upper integration boundary E_{cut} chosen so that there are exactly 10 electron states up to E_{cut} in the d band

- Calculate the spectra theoretically
- Aply XMCD sum rules
- ► Compare µ_{spin} and µ_{orb} derived from XMCD spectra with moments calculated directly
- Upper integration boundary E_{cut} chosen so that there are exactly 10 electron states up to E_{cut} in the *d* band

Fe_N / Ni(001)

- ▶ Trends of the "effective moments" $(\mu_{spin} + 7T_z)/n_h$ and μ_{orb}/n_h are reproduced well enough
- Some deviations in absolute values [up to 20% for (µ_{spin} + 7T_z)/n_h]
- Yes, application of sum rules to supported clusters makes sense !

Fe_N / Ni(001)

- ▶ Trends of the "effective moments" $(\mu_{spin} + 7T_z)/n_h$ and μ_{orb}/n_h are reproduced well enough
- Some deviations in absolute values [up to 20% for (µ_{spin} + 7T_z)/n_h]
- Yes, application of sum rules to supported clusters makes sense !

Fe_N / Ni(001)

- ▶ Trends of the "effective moments" $(\mu_{spin} + 7T_z)/n_h$ and μ_{orb}/n_h are reproduced well enough
- Some deviations in absolute values [up to 20% for (µ_{spin} + 7T_z)/n_h]
- Yes, application of sum rules to supported clusters makes sense !

▶ Trends of the "effective moments" $(\mu_{spin} + 7T_z)/n_h$ and μ_{orb}/n_h are reproduced well enough

Fe_M / Ni(001)

- ▶ Some deviations in absolute values [up to 20% for $(\mu_{spin} + 7T_z)/n_h$]
- Yes, application of sum rules to supported clusters makes sense !

- ▶ Trends of the "effective moments" $(\mu_{spin} + 7T_z)/n_h$ and μ_{orb}/n_h are reproduced well enough
- Some deviations in absolute values [up to 20% for $(\mu_{spin} + 7T_z)/n_h$]
- Yes, application of sum rules to supported clusters makes sense !

Fe_M / Ni(001)

XAS and XMCD of clusters: summary

- Difference between electronic structure of Fe clusters and of a Fe crystal is reflected by the difference in their XMCD
- ► The L_{2,3} edge XMCD of the clusters differ from the bulk only quantitatively through higher intensities of the dominant peaks.
- Small yet distinct positive hump just after the L₃ peak a marker of "clusterization" in XMCD spectra?
- XMCD sum rules can be applied for clusters, especially if the trends are in focus

Further reading: Šipr & Ebert PRB 72, 134406 (2005)
XAS and XMCD of clusters: summary

- Difference between electronic structure of Fe clusters and of a Fe crystal is reflected by the difference in their XMCD
- ► The L_{2,3} edge XMCD of the clusters differ from the bulk only quantitatively through higher intensities of the dominant peaks.
- Small yet distinct positive hump just after the L₃ peak a marker of "clusterization" in XMCD spectra?
- XMCD sum rules can be applied for clusters, especially if the trends are in focus

Further reading: Šipr & Ebert PRB 72, 134406 (2005)

XAS and XMCD of clusters: summary

- Difference between electronic structure of Fe clusters and of a Fe crystal is reflected by the difference in their XMCD
- ► The L_{2,3} edge XMCD of the clusters differ from the bulk only quantitatively through higher intensities of the dominant peaks.
- Small yet distinct positive hump just after the L₃ peak a marker of "clusterization" in XMCD spectra?

XMCD sum rules can be applied for clusters, especially if the trends are in focus

Further reading: Šipr & Ebert PRB 72, 134406 (2005)

XAS and XMCD of clusters: summary

- Difference between electronic structure of Fe clusters and of a Fe crystal is reflected by the difference in their XMCD
- ► The L_{2,3} edge XMCD of the clusters differ from the bulk only quantitatively through higher intensities of the dominant peaks.
- Small yet distinct positive hump just after the L₃ peak a marker of "clusterization" in XMCD spectra?
- XMCD sum rules can be applied for clusters, especially if the trends are in focus

Further reading: Šipr & Ebert PRB 72, 134406 (2005)

Anything that can oscillate, will oscillate

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

- Anything that can oscillate, will oscillate
- Substrate makes the clusters to behave

(ロ)、(型)、(E)、(E)、 E、 の(の)

- Anything that can oscillate, will oscillate
- Substrate makes the clusters to behave
- Using bulk data (potentials, exchange constants, ...) for cluster calculations does no good

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- Anything that can oscillate, will oscillate
- Substrate makes the clusters to behave
- Using bulk data (potentials, exchange constants, ...) for cluster calculations does no good

Look for trends, not for values