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Introduction: Clusters and magnetism
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Clusters: Who they are?
» Clusters = systems of tens to hundreds of atoms

» Radii from ~6 A for a 100-atom cluster to ~15 A for a
1000-atom cluster

» Free clusters — giant molecules, surrounded by vacuum

& &

» Supported clusters — adsorbed on a surface



Clusters: What can we expect ?

» Clusters mark the transition between atoms, surfaces and bulk
systems
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Clusters: What can we expect ?

» Clusters mark the transition between atoms, surfaces and bulk
systems

> Interesting phenomena (and a lot of fun) can be anticipated

» Our main focus will be on their magnetic properties
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Where does magnetism come from?

» Classically: Magnetic field is something produced by moving
electric charges that affects other moving charges

» Special relativity: Magnetism is a fictitious force needed to
guarantee Lorentz invariance when charges move

» Dealing with magnetism in the framework of Dirac equation is
ideologically simple
» No need for magnetism to be introduced by God (as it is the
case with Schrédinger equation)



Two ways of moving an electron

(A quick and dirty introduction to magnetism)

» Orbiting Q

» Spinning ?



Orbital magnetic moment (1)

Classical expression for magnetic moment:

Horb = IS - Horb = _;UBL

where upg is Bohr magneton

e
= h
127 2m.

and L is angular momentum devided by h.

D



Orbital magnetic moment (1)

Classical expression for magnetic moment:

Horb = IS = Mob = —pusl Q

where upg is Bohr magneton

e
= h
127 2m.

and L is angular momentum devided by h.

For electron orbiting around an atom, the z-component of orbital
magnetic moment is thus

() _ _
Morb - meup

where my is the magnetic quantum number.



Orbital magnetic moment (2)

Practical evaluation of orbital magnetic
moment of electrons in a solid:

D

EF
/‘((;})a:_ﬂ_BlmTf/ dE/d?’rBLz G(r,r;E) ,
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[ is Dirac matrix
L, is the z-component of a 4 X 4 matrix vector I ® L
G(r,r; E) is a 4 x 4 Green function matrix.



Orbital magnetic moment (2)

Practical evaluation of orbital magnetic
moment of electrons in a solid:

D

EF
/‘g})a:_ﬂ_BlmTr/ dE/d?’rﬂLz G(r,r;E) ,
@ — o0

[ is Dirac matrix
L, is the z-component of a 4 X 4 matrix vector I ® L
G(r,r; E) is a 4 x 4 Green function matrix.

Even more practical evaluation of piop:
Find it in the output of the SPRKKR. program.



Spin magnetic moment (1)

Electron spin: Picture of a rotating charged sphere fails. . .

HMorb = — UB L vers. Mspin = _2NBS

L is angular momentum connected with orbital motion
S is angular momentum connected with “spinning’



Spin magnetic moment (1)

Electron spin: Picture of a rotating charged sphere fails. . .

HMorb = — UB L vers. Mspin = _2NBS
L is angular momentum connected with orbital motion

S is angular momentum connected with “spinning’ I

For electron around an atom, the z-component of spin-related
angular momentum is

1
s@ = 4+n,
2
hence we get for a z-component of spin-related magnetic moment

luglz)zn = :l:luB :



Spin magnetic moment (2)

Practical evaluation of spin magnetic moment
of electrons in a solid:

Er
i = [ ae [ Prio. o)
™ —00

0 is the z-component of a 4 X 4 matrix vector h ® o



Free Fe clusters — ground-state magnetic properties
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Magnetism of Fe atom
Magnetic properties of atoms are governed by Hund rules

Electron configuration: 3d%4s?

> Spin magnetic moment: fpin = 4B
» First Hund rule: Total atomic spin quantum number
S =>" ms is maximum (as long as it is compatible with

Pauli exclusion principle)

» Orbital magnetic moment: pon, = 2 g
» Second Hund rule: Total atomic orbital quantum number
L=>" myis maximum (as long as it is compatible with
Pauli exclusion principle and first Hund rule)
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(with respect to atomic case)
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Magnetism of bulk Fe crystal

> Generally: Magnetism is suppressed in the bulk
(with respect to atomic case)

> Spin magnetic moment is fispin ~ 2.2 (g per atom

» Orbital magnetic moment is quenched (outright zero in
non-relativistic case)

» Intuitively: Electron are not free to orbit around atoms

» Relativistic effect: The quenched orbital moment is partially
restored by LS coupling (piorb = 0.05up5 per atom)
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» Atoms at surfaces exhibit some atomic-like
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Surfaces are magnetism-friendly

» Atoms at surfaces exhibit some atomic-like o000
characteristics

» Spin magnetic moment is larger than in bulk; for Fe it is
Mspin ~ 2.5-3.0 pp per atom

» The orbital magnetic moment is increased by an even larger
percentage, porh ~ 0.07-0.12 pp per atom



Magnetism of iron: summary
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Magnetism of iron: summary

@)

atom

I Hspin =4 1B

© Horb =2 UB

0000

surface

Hspin = 2.5-3.0 UB

Loy, =0.07-0.12 i

Hspin =2.2 [1g

Horb = 0.05 127

(clusters go in between)

Properties of clusters should display traces of surface and bulk

trends



Why all the fuss with o ?

il

> Lorb IS small



Why all the fuss with o ?

il

» It is a manifestation of spin-orbit coupling, which is the
mechanism behind the magnetocrystalline anisotropy

> Lorb is small but important !

» Under certain assumptions, magnetocrystalline anisotropy
energy (MAE) can be estimated as

AEyae = const X (ull)rb — ujrb)

where ullrb and uérb are orbital magnetic moments for two

perpendicular directions of the magnetization M
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» Free spherical-like Fe clusters with geometry taken as if cut
from a bulk bcc Fe crystal



System we study

» Free spherical-like Fe clusters with geometry taken as if cut
from a bulk bcc Fe crystal

» Cluster size between 9 atoms (1 coordination shell) and
89 atoms (7 coordinations shells)

shells atoms radius [A]

1 9 2.49
2 15 2.87
3 27 4.06
4 51 4.76
5 59 4.97
6 65 5.74
7 89 6.25
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Lowering of symmetry

» Magnetization and spin-orbit coupling lower the symmetry of
our systems

» Atoms belonging to the same coordination shell may be
inequivalent

» Classes of equivalent atoms depend on the direction of
magnetization M

Fe cluster
27 atoms

view in Z direction

O @ 3rdshell
O @ 2nd shell
@ istshell

@ center
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Theoretical formalism

> L(S)DA scheme

» cluster calculations done in real space via a fully-relativistic
spin-polarized multiple-scattering technique

» crystal surfaces treated as 2D finite slabs (fully-relativistic
spin-polarized TB-KKR method)

» spherical ASA approximation

» empty spheres put around the clusters in order to account for
spilling of the electron charge into vacuum



DOS in clusters and in bulk

» Atomic-like features present in DOS of clusters
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3| 9-atonjs cluster |

-5 0 5
energy above Ep [eV]



DOS in clusters and in bulk

» Atomic-like features present in DOS of clusters
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DOS in clusters and in bulk

» Atomic-like features present in DOS of clusters
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DOS in clusters and in bulk

» Atomic-like features present in DOS of clusters

» DOS in the center of clusters approaches the bulk quite slowly

=== hulk === bhulk === hulk
—— central atom — central atom —— central atom
T T T T T T
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Magnetic profiles of clusters
What do we mean by that

Local magnetic moments:
Hspin and fio:1, can be attributed to

individual sites by performing the
integrations

Hspin ~~ /d3rﬁaz G(r,r, E)
and
o ~ / &Br L, Gr,r. E)

over atomic spheres



Magnetic profiles of clusters
What do we mean by that

Local magnetic moments:
Hspin and fio;, can be attributed to
‘ individual sites by performing the
‘ integrations
‘ ‘ Hspin ~ /d3rﬂaz G(r,r,E)
“ and
o ~ [ L G(rr. )

over atomic spheres



Free Fe clusters: magnetic profiles
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Free Fe clusters: magnetic profiles

» Enhancements and
oscillations all around

> ispin does not depend on
the direction of M

spin magnetic moment  [ug]
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Free Fe clusters: magnetic profiles

» Enhancements and
oscillations all around

> ispin does not depend on
the direction of M

> lorb depends on the
direction of M
» for inequivalent atoms
of the same
coordination sphere
Lorb differs

spin magnetic moment  [ug]
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Enhancements and
oscillations all around

Hspin does not depend on
the direction of M

Lorb depends on the
direction of M

» for inequivalent atoms
of the same
coordination sphere
Lorb differs

Lorb averaged over
coordination spheres
does not depend on the
direction of M

spin magnetic moment  [ug]
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Free Fe clusters: magnetic profiles
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Clusters vers. surfaces: HOWTO
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Clusters vers. surfaces: HOWTO

» take free iron cluster of
89 atoms

» drill a hole into this
cluster

{100} surface l [001] (10]

[ ]
o ®» & o
> @& O
*“ & >
o & & o
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spherical cluster of 89 atoms
o o bulk iron geometry

layer 1
o e o
e o o
o e o

layer 2
e o o o
e o 9 o
e o 9 o
® shell O (up to 1 atom)
@ shell 1 (up to 9 atoms)
@ shell 2 (up to 15 atoms) ¢ e e
@ shell 3 (up to 27 atoms) layer3 °

@ shell 4 (up to 51 atoms)
© shell 5 (up to 59 atoms)
@ shell 6 (up to 65 atoms)

© shell 7 (up to 89 atoms)

L] layer 4



Clusters vers. surfaces: HOWTO

. {100} surface l[oon [0l
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Clusters vers. surfaces: HOWTO

» take free iron cluster of
89 atoms

» drill a hole into this
cluster

> inspect fispin and fiorh
around you and compare
them with what you see
beneath a crystal surface

» explore various
“crystallographic
directions”

{100} surface

e

layer 0

o o

e o o

o.o )

o o

layer 1 .
o o
.
layer 2

® shell O (up to 1 atom)
@ shell 1 (up to 9 atoms)
@ shell 2 (up to 15 atoms)
@ shell 3 (up to 27 atoms)
@ shell 4 (up to 51 atoms)
© shell 5 (up to 59 atoms)
@ shell 6 (up to 65 atoms)
shell 7 (up to 89 atoms)

[100]
1 [001] y

spherical cluster of 89 atoms
bulk iron geometry

¢« o o
e e o o

layer 3

layer 4



Clusters vers. surfaces: fispin
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Clusters vers. surfaces: fispin

3.6

N N N w © ®
= o -} o N I

spin magnetic moment gy 18]

N
N

2.0

18

. . . . 3.6 . . . . 3.6 . . . .
[®¢ —— 89-atoms cluster | sal® 89-atoms cluster| | sal® T 89-atoms cluster| |
] crystal surface L crystal surface im crystal surface
3 1 32+t 1 32+t 1
r 1 3.0 1 3.0 o0 1
oo o
00 oo o o0 o
L p 28} o p 28]

[001] direction

spin magnetic moment  jspin  [1g]

[110] direction

spin magnetic moment jispin  [1g]

o o E ]
[111] direction 3

r (001) surface 1 26 (110) surface ul 26 (111) surface 1
8 1 24+t 1 24+ 1
N0 7
3 1 22+t 1 22+ 1
3 1 20+t 1 20+t 1
. : . . 18 . : . . 18 . : . .
6 4 2 0 6 4 2 0 6 4 2 0

depth below crystal-like surface [f\]

depth below crystal-like surface [ﬂ]

depth below crystal-like surface [/K]



Clusters vers. surfaces: o
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Clusters vers. surfaces: o
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Dependence of fipin on Neg

Effective coordination
number:

for a bcc crystal one
defines

Neg = Ny +0.25 x Ny,

where Nj is number of 1%
neighbors and N is
number of 279 neighbors.

[D. Tomének et al.
(1983); J. Zhao et al.
(1995)]
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Dependence of fipin on Neg

Effective coordination

number: 85
for a bcc crystal one .
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Dependence of fipin on Neg

Effective coordination

number: 85y
for a bcc crystal one 6 g'#;tefs
defines 230 x| surfaces
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. g X
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Dependence of fipin on Neg

Effective coordination
number:

for a bcc crystal one
defines

Neg = Ny +0.25 x Ny,

where Nj is number of 1%
neighbors and N is
number of 279 neighbors.

[D. Tomének et al.
(1983); J. Zhao et al.
(1995)]
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For orbital moment 0,1, a similar dependence can be observed but with

much larger “fluctuations”.
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Magnetism free clusters: summary

> In free clusters, fispin and fior1, are enhanced at atoms close to
the cluster surface

» Oscillations both in pgpin and in fi1 are a general feature
of magnetic profiles.
These oscillations are more pronounced in clusters than
at crystal surfaces.

> Lorb at individual atoms strongly depends on the direction
of M
However, the anisotropy in pop averaged over whole coordination
spheres is very small

> Lspin IN clusters and at crystal surfaces depends linearly
on Neﬁ‘

Further reading: Sipr et al. PRB 70, 174423 (2004)
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Free and supported clusters

» How do the magnetic properties change if clusters are
deposited on a substrate ?

» Take analogous systems (identical sizes, identical geometries)
and have a look

» Focus rather on the trends than on particular values
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Calculational procedure for supported clusters

Impurity Green function method

» Calculate electronic structure of the “host” system (clean
surface)

» Tight-binding or screened KKR

» Supported clusters are treated as a perturbation to the clean
surface and the

» Green's function of the new system (cluster plus substrate) is
obtained by solving the Dyson equation.

» Atomic sphere approximation (ASA), {pax=2

» Focus on planar Fey on Ni(001) and Cop clusters on Au(111)



Shapes of clusters (free or supported)
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Only nearest-neighbor substrate atoms are shown.
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Average magnetic moments
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quite large
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Effect of coordination on /i,
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» Big scatter around the linear dependence for small planar free
clusters
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» Substrate acts as an adult supervisor for the free clusters

» |t suppresses the tendency of magnetic moments to oscillate
with cluster size

Further reading:
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Comparison between free and supported clusters: summary

» Substrate acts as an adult supervisor for the free clusters

» |t suppresses the tendency of magnetic moments to oscillate
with cluster size

> It makes pgpin to depend linearly on the coordination number

» For free clusters, this trend appears only for spherical and/or
larger clusters

Further reading:
Sipr et al. JPCM 19, 096203 (2007)
Sipr et al. Cent. Eur. J. Phys. 7, 257 (2009)



Magnetism of clusters for T # 0



Finite temperature magnetism

For localized moments, finite temperature magnetism can be
described by a classical Heisenberg hamiltonian
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Mapping DFT onto Heisenberg

Comparing energy associated with infinitesimal rotations of local
magnetic moments —

1 Er p ”
= e [aE T (67 - ) (657 - )

[Liechtenstein et al. (1986)]



Mapping DFT onto Heisenberg

Comparing energy associated with infinitesimal rotations of local
magnetic moments —

1 Er —1 “1\ _j =1 —1y\ Jji
Jij = —Elm/ dE Tr [(tiT — 1 )TTU (th -t )7{

[Liechtenstein et al. (1986)]

Valid only if magnetism can be described by localized magnetic
moments (fine for Fe)
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Ey is the energy of configuration k
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From J;j to M(T)

» Mean magnetization M(T) of a system described by a
classical Heisenberg hamiltonian is

>k M exp(— )
>k exp(— kBT)
My is the magnetization of the system for a particular

configuration k of the directions of spins
Ey is the energy of configuration k

M(T) =

» Practical evaluation: Monte Carlo method with the
importance sampling Metropolis algorithm

» For bulk Fe, this procedure yields finite-temperature results
that are in a good agreement with experiment [Pajda et al.
(2001)]
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Jij in bulk and in clusters

50 T T T T

Exchange coupling between atoms
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Atom i is fixed, atom j scans coordination shells around i

» Oscillatory decay of Jj; with distance

» Jj; for a given distance differs a lot between clusters and
crystals



Site-dependence of Zj Ji

Total strength with which one spin (at site /) is held in its
direction:

Energy needed to flip the spin of atom i while keeping all the
remaining spins collinear:

Ji =Y _Jj

J#i
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Site-dependence of Zj Ji

[meV]

Total coupling of a particular atom

w
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sum of all coupling parameters J;= 3 J;
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distance of atom i from the center of the cluster [a.u.]

> Mild differences in J; translate into large differences in 3. J;

» No systematics in cluster size,
no systematics in the position of atom within a cluster
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Decay of magnetization with T
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M as function of cluster size
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» Dependence of M on cluster size does not really vary with T
for low (“experimental”) temperatures

» For large T, magnetization of large clusters is significantly
reduced



Dependence of T, on cluster size

M(T) and its derivative

mean magnetization M(T) (1]

» Critical temperature T, defined as the inflection point of
M(T) curves (no phase transition for finite systems)
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Dependence of T, on cluster size

critical temperature T, [K]
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» Critical temperature T, defined as the inflection point of

M(T) curves (no phase transition for finite systems)

» T. oscillates with cluster size

» Proper cluster-adjusted J;; have to be taken into account
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Shell-resolved magnetization

Expectations:

outer shells have smaller coordination numbers than inner shells

=> M in outer shells should decay more quickly with T
than M of inner shells
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Shell-resolved magnetization

normalized projection of magnetization
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» Although M of outer shells usually decays faster than M of
inner shells, no systematics can be found.
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» Magnetic profile gets more flat if temperature increases

» M of outermost layers is similar in magnitude to M of inner
layers even for large T (i.e., no drastic decrease of surface M)



T # 0 magnetism: summary

» Exchange coupling constants Jj; in clusters differ from the
bulk, with no obvious systematics (= one has to calculate
them...)

Further reading:
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T # 0 magnetism: summary

» Exchange coupling constants Jj; in clusters differ from the
bulk, with no obvious systematics (= one has to calculate
them...)

» Magnetization M(T) curves are more shallow from small
clusters than for large clusters

» Magnetization of the outer shells decreases with temperature
more quickly than magnetizatin of inner shells (usually. ..)

» Critical temperature T, oscillates with cluster size
Further reading:

Polesya et al. EPL 74 1074 (2006)
Sipr et al. JPCM 19, 446205 (2007)



X-ray absorption spectroscopy of clusters



X-ray absorption spectroscopy HOWTO

» X-rays go in, x-rays go out, absorption coefficient is measured
as a function the energy of the incoming x-rays
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X-ray absorption spectroscopy HOWTO
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X-ray absorption spectroscopy HOWTO

» X-rays go in, x-rays go out, absorption coefficient is measured
as a function the energy of the incoming x-rays

x-rays in
x-rays out
NANANANANAND
NAANANANANAND NANANANANANY
NANANANANAND NANAANANANND
NAANAANANN Y

» Most of the absorption goes on account of the photoelectric
effect on core electrons

» By tuning the energy of incoming x-rays, electrons from one
core level only participate

» Chemical selectivity
» Dipole selection rule
» Angular-momentum selectivity



XMCD HOWTO

» XMCD (X-ray Magnetic Circular Dichroism):
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XMCD HOWTO

» XMCD (X-ray Magnetic Circular Dichroism):
sample is magnetized, measure the difference between
absorption of left and right circularly polarized x-rays

photon helicity

parallel o
X-rays —_— magnetization
NAANANANANNL
~—
antiparallel

» Helicity of the incoming photons is parallel or antiparallel with
the cluster magnetization M (coincides with the [001]
direction in the parental crystal)
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What can XMCD do for us?

» XMCD spectroscopy probes the magnetic properties of
materials

» Through the sum rules, XMCD can inform about fispin and
Lorb Separately

» L5 3 edge: sum rules give access to the d components of fispin
and piorb (for transition metals, that's what we want)

» K edge: sum rule gives access to the p component of iop
» Employing sum rules on experimental data may require
substantial theoretical input

» Theoretical modelling should provide an intuitive
understanding of what is going on



L, 3-edge XMCD

L, 3-edge XANES
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L, 3 edge of magnetic TM systems

o

XMCD sum rules:

L, Ls a Ls isotropic
1 | 34 absorption |
E . .
T8 L, By adding, subtracting and
O 2F e ey
5 dividing the peak areas,
O chemically-specific pispin, florb
g and fiorh/ ftspin €an be obtained
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energy [eV]
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Some more details

» Spectrum of cluster is a superposition of spectra at edges of
individual atoms

» The spectra do not depend on the direction of M

» magnetic anisotropy in bcc-like Fe clusters is practically
negligible

» average of uep over all atoms does not depend on M either

» Core hole neglected
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L3 edge XAS of clusters

e No significant variation with cluster
size

= free cluster
=mm pulk crystal

M

» Fine structure just after the L3
white line — presence of truly
discrete states (vaccum level is
5-8 eV above Ef)

» Smoothening of peaks for larger
clusters

L, 3 edge XANES of clusters (per one atom) [Mb]

0 10 20
energy above Eg [eV]
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» Similar shape for clusters and for
the bulk

H

.= —— free cluster 59

==== bulk crystal

L, 3 edge XMCD of clusters (per one atom) [Mb]

10 2
energy above Er [eV]



L3 edge XMCD of clusters

» Similar shape for clusters and for
the bulk

» Peak intensity systematically
decreases and peak width increases
with increasing cluster size

H

i — free cluster 99

==== bulk crystal

L, 3 edge XMCD of clusters (per one atom) [Mb]

10 2
energy above Er [eV]



L3 edge XMCD of clusters

» Similar shape for clusters and for __V___.JLBQ.‘
the bulk

» Peak intensity systematically
decreases and peak width increases

with increasing cluster size 59

— free cluster
==== bulk crystal

» No systematic variations for areas
of peaks (cluster magnetization
oscillates with cluster size)
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L3 edge XMCD of clusters

» Similar shape for clusters and for
the bulk

» Peak intensity systematically
decreases and peak width increases
with increasing cluster size

» No systematic variations for areas
of peaks (cluster magnetization
oscillates with cluster size)

» Small yet distinct positive hump
just after the main L3 peak

L, 3 edge XMCD of clusters (per one atom) [Mb]

H

i — free cluster 99

==== bulk crystal

10
energy above Er [eV]
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pronounced fine structure at the Fe L3 and L, edges.

Calculated XMCD of clusters display no such fine structure.
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Fe cluster
27 atoms

view in Z direction

© @ 3 shell

© @ 2nd shell
@ 1stshell
@ center

Spectrum of the whole cluster is
a superposition of signals from all

individual atoms
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L, 3 edge XMCD of a 27-atom cluster
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The wiggles in XMCD mutually cancel !

Fe cluster
27 atoms

view in Z direction

© @ 3 shell

© @ 2nd shell
@ 1stshell
@ center

1% shell A ]

2F .

Spectrum of the whole cluster is
a superposition of signals from all

individual atoms Ar 7

[
center A

= indiv. atoms (maj. gr.)
== indiv. atoms (min. gr.)
==== Whole cluster

1 L 1 L 1 L 1 L 1
4 8 12 16
energy above E [eV]

L, 3 edge XMCD of a 27-atom cluster [Mb]
T
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Sum rules can be checked

6T » Calculate the spectra theoretically
ﬂ Ls isotropic
z.,l absorption | » Aply XMCD sum rules
X :
o L, » Compare fispin and fio1, derived
T2t k from XMCD spectra with moments
S calculated directly

[a)]
g _M
<0
(0]
<
O 2+ difference 4
Y 10
9§ Ecut ) .
4 1 1 1 1
-10 0 10 20 30



Sum rules can be checked

b > Calculate the spectra theoretically
& Ls isotropic
z.,l absorption | » Aply XMCD sum rules
Z;) L, » Compare fispin and fio1, derived
T2t L from XMCD spectra with moments
Ry calculated directly

g » Upper integration boundary E
S0 — T chosen so that there are exactly
gn 10 electron states up to E.yt in the
o -2f difference
t E L0 0 d band
9 cut

4 Il Il Il Il

-10 0 10 20 30

energy [eV]
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Validity of sum

7T, per Fe atom
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Validity of sum rules

ooss |- el ooss |- 4 .
g+ T I NN i ign + 7T Fey / Ni(001)
E oosf B
) 5
E e [0 — directly 5
o ] * — from XAS v
5 o g
) =~
Horl 4 n : F 4
& 3 :
& 003 | - 2
number of Fe atoms number of Fe atoms number of Fe atoms

> Trends of the “effective moments” (jispin +77,)/np and
Lorb/Np are reproduced well enough

» Some deviations in absolute values [up to 20% for
(Mspin +7 Tz)/nh]

» Yes, application of sum rules to supported clusters makes
sense !
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XAS and XMCD of clusters: summary

» Difference between electronic structure of Fe clusters and of a
Fe crystal is reflected by the difference in their XMCD

» The L3 edge XMCD of the clusters differ from the bulk only
quantitatively through higher intensities of the dominant
peaks.

» Small yet distinct positive hump just after the L3 peak — a
marker of “clusterization” in XMCD spectra?

» XMCD sum rules can be applied for clusters, especially if the
trends are in focus

Further reading: Sipr & Ebert PRB 72, 134406 (2005)
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Cluster physics in a nutshell

» Anything that can oscillate, will oscillate
» Substrate makes the clusters to behave

» Using bulk data (potentials, exchange constants, ...) for
cluster calculations does no good

» Look for trends, not for values
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