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Introduction: Clusters and magnetism



Clusters: Who they are?

◮ Clusters = systems of tens to hundreds of atoms

◮ Radii from ∼6 Å for a 100-atom cluster to ∼15 Å for a
1000-atom cluster
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Clusters: Who they are?

◮ Clusters = systems of tens to hundreds of atoms

◮ Radii from ∼6 Å for a 100-atom cluster to ∼15 Å for a
1000-atom cluster

◮ Free clusters — giant molecules, surrounded by vacuum

◮ Supported clusters — adsorbed on a surface



Clusters: What can we expect ?

◮ Clusters mark the transition between atoms, surfaces and bulk
systems

◮ Interesting phenomena (and a lot of fun) can be anticipated

◮ Our main focus will be on their magnetic properties
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Where does magnetism come from?

◮ Classically: Magnetic field is something produced by moving
electric charges that affects other moving charges

◮ Special relativity: Magnetism is a fictitious force needed to
guarantee Lorentz invariance when charges move

◮ Dealing with magnetism in the framework of Dirac equation is
ideologically simple

◮ No need for magnetism to be introduced by God (as it is the
case with Schrödinger equation)
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Two ways of moving an electron

(A quick and dirty introduction to magnetism)

◮ Orbiting

◮ Spinning



Orbital magnetic moment (1)

Classical expression for magnetic moment:

µorb = I S =⇒ µorb = −µB L

where µB is Bohr magneton

µB ≡
e

2me
~

and L is angular momentum devided by ~.

For electron orbiting around an atom, the z-component of orbital
magnetic moment is thus

µ
(z)
orb = −mℓ µB ,

where mℓ is the magnetic quantum number.
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Orbital magnetic moment (2)

Practical evaluation of orbital magnetic
moment of electrons in a solid:

µ
(z)
orb

= −
µB

π
ImTr

∫ EF

−∞
dE

∫

d3rβ Lz G (r, r;E ) ,

β is Dirac matrix
Lz is the z-component of a 4 × 4 matrix vector I4 ⊗ L

G (r, r;E ) is a 4 × 4 Green function matrix.

Even more practical evaluation of µorb:

Find it in the output of the sprkkr program.



Orbital magnetic moment (2)

Practical evaluation of orbital magnetic
moment of electrons in a solid:

µ
(z)
orb

= −
µB

π
ImTr

∫ EF

−∞
dE

∫

d3rβ Lz G (r, r;E ) ,

β is Dirac matrix
Lz is the z-component of a 4 × 4 matrix vector I4 ⊗ L

G (r, r;E ) is a 4 × 4 Green function matrix.

Even more practical evaluation of µorb:

Find it in the output of the sprkkr program.



Spin magnetic moment (1)

Electron spin: Picture of a rotating charged sphere fails. . .

µorb = −µB L vers. µspin = − 2µB S

L is angular momentum connected with orbital motion
S is angular momentum connected with “spinning”

For electron around an atom, the z-component of spin-related
angular momentum is

S (z) = ±
1

2
~ ,

hence we get for a z-component of spin-related magnetic moment

µ
(z)
spin = ±µB .
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Spin magnetic moment (2)

Practical evaluation of spin magnetic moment
of electrons in a solid:

µ
(z)
spin = −

µB

π
Im Tr

∫ EF

−∞
dE

∫

d3rβ σz G (r, r,E ) ,

σz is the z-component of a 4 × 4 matrix vector I2 ⊗ σ



Free Fe clusters — ground-state magnetic properties



Magnetism of Fe atom

Magnetic properties of atoms are governed by Hund rules

Electron configuration: 3d64s2

◮ Spin magnetic moment: µspin = 4µB

◮ First Hund rule: Total atomic spin quantum number
S =

∑

ms is maximum (as long as it is compatible with
Pauli exclusion principle)

◮ Orbital magnetic moment: µorb = 2µB

◮ Second Hund rule: Total atomic orbital quantum number
L =

∑

mℓ is maximum (as long as it is compatible with
Pauli exclusion principle and first Hund rule)
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Magnetism of bulk Fe crystal

◮ Generally: Magnetism is suppressed in the bulk
(with respect to atomic case)

◮ Spin magnetic moment is µspin ≈ 2.2 µB per atom

◮ Orbital magnetic moment is quenched (outright zero in
non-relativistic case)

◮ Intuitively: Electron are not free to orbit around atoms

◮ Relativistic effect: The quenched orbital moment is partially
restored by LS coupling (µorb ≈ 0.05µB per atom)
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Surfaces are magnetism-friendly

◮ Atoms at surfaces exhibit some atomic-like
characteristics

◮ Spin magnetic moment is larger than in bulk; for Fe it is
µspin ≈ 2.5–3.0 µB per atom

◮ The orbital magnetic moment is increased by an even larger
percentage, µorb ≈ 0.07–0.12 µB per atom
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Magnetism of iron: summary

atom surface bulk

µspin =4 µB µspin =2.5–3.0 µB µspin =2.2 µB

µorb =2 µB µorb =0.07–0.12 µB µorb =0.05 µB

(clusters go in between)

Properties of clusters should display traces of surface and bulk
trends
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Why all the fuss with µorb ?

◮ µorb is small but important !

◮ It is a manifestation of spin-orbit coupling, which is the
mechanism behind the magnetocrystalline anisotropy

◮ Under certain assumptions, magnetocrystalline anisotropy
energy (MAE) can be estimated as

∆EMAE = const ×
(

µ
‖
orb − µ

⊥
orb

)

where µ
‖
orb and µ

⊥
orb are orbital magnetic moments for two

perpendicular directions of the magnetization M



System we study

◮ Free spherical-like Fe clusters with geometry taken as if cut
from a bulk bcc Fe crystal



System we study

◮ Free spherical-like Fe clusters with geometry taken as if cut
from a bulk bcc Fe crystal

◮ Cluster size between 9 atoms (1 coordination shell) and
89 atoms (7 coordinations shells)

shells atoms radius [Å]

1 9 2.49
2 15 2.87
3 27 4.06
4 51 4.76
5 59 4.97
6 65 5.74
7 89 6.25



Lowering of symmetry

◮ Magnetization and spin-orbit coupling lower the symmetry of
our systems

◮ Atoms belonging to the same coordination shell may be
inequivalent

◮ Classes of equivalent atoms depend on the direction of
magnetization M
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Theoretical formalism

◮ L(S)DA scheme

◮ cluster calculations done in real space via a fully-relativistic
spin-polarized multiple-scattering technique

◮ crystal surfaces treated as 2D finite slabs (fully-relativistic
spin-polarized TB-KKR method)

◮ spherical ASA approximation

◮ empty spheres put around the clusters in order to account for
spilling of the electron charge into vacuum
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DOS in clusters and in bulk

◮ Atomic-like features present in DOS of clusters

◮ DOS in the center of clusters approaches the bulk quite slowly



Magnetic profiles of clusters
What do we mean by that

Local magnetic moments:

µspin and µorb can be attributed to
individual sites
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Free Fe clusters: magnetic profiles

◮ Enhancements and
oscillations all around

◮ µspin does not depend on
the direction of M

◮ µorb depends on the
direction of M

◮ for inequivalent atoms

of the same
coordination sphere
µorb differs

◮ µorb averaged over
coordination spheres
does not depend on the
direction of M 0 2 4 6
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Clusters vers. surfaces: howto

◮ take free iron cluster of
89 atoms

◮ drill a hole into this
cluster

◮ inspect µspin and µorb

around you and compare
them with what you see
beneath a crystal surface

◮ explore various
“crystallographic
directions”

shell 0 (up to 1 atom)


shell 1 (up to 9 atoms)


shell 2 (up to 15 atoms)


shell 3 (up to 27 atoms)


shell 4 (up to 51 atoms)


shell 5 (up to 59 atoms)
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Clusters vers. surfaces: µspin
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Clusters vers. surfaces: µspin
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Clusters vers. surfaces: µorb
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Clusters vers. surfaces: µorb
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Dependence of µspin on Neff

Effective coordination
number:
for a bcc crystal one
defines

Neff = N1 + 0.25 × N2,

where N1 is number of 1st

neighbors and N2 is
number of 2nd neighbors.

[D. Tománek et al.

(1983); J. Zhao et al.

(1995)]

For orbital moment µorb, a similar dependence can be observed but with

much larger “fluctuations”.
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Magnetism free clusters: summary

◮ In free clusters, µspin and µorb are enhanced at atoms close to
the cluster surface

◮ Oscillations both in µspin and in µorb are a general feature
of magnetic profiles.
These oscillations are more pronounced in clusters than
at crystal surfaces.

◮ µorb at individual atoms strongly depends on the direction
of M

However, the anisotropy in µorb averaged over whole coordination

spheres is very small

◮ µspin in clusters and at crystal surfaces depends linearly
on Neff

Further reading: Šipr et al. PRB 70, 174423 (2004)



Magnetism free clusters: summary

◮ In free clusters, µspin and µorb are enhanced at atoms close to
the cluster surface

◮ Oscillations both in µspin and in µorb are a general feature
of magnetic profiles.
These oscillations are more pronounced in clusters than
at crystal surfaces.

◮ µorb at individual atoms strongly depends on the direction
of M

However, the anisotropy in µorb averaged over whole coordination

spheres is very small

◮ µspin in clusters and at crystal surfaces depends linearly
on Neff
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Magnetism of free and supported clusters



Free and supported clusters

◮ How do the magnetic properties change if clusters are
deposited on a substrate ?

◮ Take analogous systems (identical sizes, identical geometries)
and have a look

◮ Focus rather on the trends than on particular values



Free and supported clusters

◮ How do the magnetic properties change if clusters are
deposited on a substrate ?

◮ Take analogous systems (identical sizes, identical geometries)
and have a look

◮ Focus rather on the trends than on particular values



Free and supported clusters

◮ How do the magnetic properties change if clusters are
deposited on a substrate ?

◮ Take analogous systems (identical sizes, identical geometries)
and have a look

◮ Focus rather on the trends than on particular values



Calculational procedure for supported clusters
Impurity Green function method

◮ Calculate electronic structure of the “host” system (clean
surface)

◮ Tight-binding or screened KKR

◮ Supported clusters are treated as a perturbation to the clean
surface and the

◮ Green’s function of the new system (cluster plus substrate) is
obtained by solving the Dyson equation.

◮ Atomic sphere approximation (ASA), ℓmax=2

◮ Focus on planar FeN on Ni(001) and CoN clusters on Au(111)



Calculational procedure for supported clusters
Impurity Green function method

◮ Calculate electronic structure of the “host” system (clean
surface)

◮ Tight-binding or screened KKR

◮ Supported clusters are treated as a perturbation to the clean
surface and the

◮ Green’s function of the new system (cluster plus substrate) is
obtained by solving the Dyson equation.

◮ Atomic sphere approximation (ASA), ℓmax=2

◮ Focus on planar FeN on Ni(001) and CoN clusters on Au(111)



Calculational procedure for supported clusters
Impurity Green function method

◮ Calculate electronic structure of the “host” system (clean
surface)

◮ Tight-binding or screened KKR

◮ Supported clusters are treated as a perturbation to the clean
surface and the

◮ Green’s function of the new system (cluster plus substrate) is
obtained by solving the Dyson equation.

◮ Atomic sphere approximation (ASA), ℓmax=2

◮ Focus on planar FeN on Ni(001) and CoN clusters on Au(111)



Calculational procedure for supported clusters
Impurity Green function method

◮ Calculate electronic structure of the “host” system (clean
surface)

◮ Tight-binding or screened KKR

◮ Supported clusters are treated as a perturbation to the clean
surface and the

◮ Green’s function of the new system (cluster plus substrate) is
obtained by solving the Dyson equation.

◮ Atomic sphere approximation (ASA), ℓmax=2

◮ Focus on planar FeN on Ni(001) and CoN clusters on Au(111)



Calculational procedure for supported clusters
Impurity Green function method

◮ Calculate electronic structure of the “host” system (clean
surface)

◮ Tight-binding or screened KKR

◮ Supported clusters are treated as a perturbation to the clean
surface and the

◮ Green’s function of the new system (cluster plus substrate) is
obtained by solving the Dyson equation.

◮ Atomic sphere approximation (ASA), ℓmax=2

◮ Focus on planar FeN on Ni(001) and CoN clusters on Au(111)



Calculational procedure for supported clusters
Impurity Green function method

◮ Calculate electronic structure of the “host” system (clean
surface)

◮ Tight-binding or screened KKR

◮ Supported clusters are treated as a perturbation to the clean
surface and the

◮ Green’s function of the new system (cluster plus substrate) is
obtained by solving the Dyson equation.

◮ Atomic sphere approximation (ASA), ℓmax=2

◮ Focus on planar FeN on Ni(001) and CoN clusters on Au(111)



Shapes of clusters (free or supported)

CoN / Au(111)FeN / Ni(001)

Only nearest-neighbor substrate atoms are shown.
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Effect of coordination on µspin
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Comparison between free and supported clusters: summary

◮ Substrate acts as an adult supervisor for the free clusters

◮ It suppresses the tendency of magnetic moments to oscillate
with cluster size

◮ It makes µspin to depend linearly on the coordination number

◮ For free clusters, this trend appears only for spherical and/or
larger clusters

Further reading:
Šipr et al. JPCM 19, 096203 (2007)
Šipr et al. Cent. Eur. J. Phys. 7, 257 (2009)
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Magnetism of clusters for T 6= 0



Finite temperature magnetism

For localized moments, finite temperature magnetism can be
described by a classical Heisenberg hamiltonian

Heff = −
∑

i 6=j

Jij ei · ej

ei ej



Mapping DFT onto Heisenberg

Comparing energy associated with infinitesimal rotations of local
magnetic moments =⇒

Jij = −
1

4π
Im

∫ EF

dE Tr
[

(t−1
i↑ − t−1

i↓ ) τ ij
↑ (t−1

j↑ − t−1
j↓ ) τ ji

↓

]

[Liechtenstein et al. (1986)]

Valid only if magnetism can be described by localized magnetic
moments (fine for Fe)
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From Jij to M(T )

◮ Mean magnetization M(T ) of a system described by a
classical Heisenberg hamiltonian is

M(T ) =

∑

k Mk exp(− Ek

kBT
)

∑

k exp(− Ek

kBT
)

Mk is the magnetization of the system for a particular
configuration k of the directions of spins

Ek is the energy of configuration k

◮ Practical evaluation: Monte Carlo method with the
importance sampling Metropolis algorithm

◮ For bulk Fe, this procedure yields finite-temperature results
that are in a good agreement with experiment [Pajda et al.

(2001)]
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Jij in bulk and in clusters
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Site-dependence of
∑

j Jij

Total strength with which one spin (at site i) is held in its
direction:

Energy needed to flip the spin of atom i while keeping all the
remaining spins collinear:

Ji =
∑

j 6=i

Jij
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M as function of cluster size
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Dependence of Tc on cluster size
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outer shells have smaller coordination numbers than inner shells

⇒ M in outer shells should decay more quickly with T

than M of inner shells



Shell-resolved magnetization
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◮ Although M of outer shells usually decays faster than M of
inner shells, no systematics can be found.
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Magnetic profile for T 6=0
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◮ Magnetic profile gets more flat if temperature increases

◮ M of outermost layers is similar in magnitude to M of inner
layers even for large T (i.e., no drastic decrease of surface M)
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T 6= 0 magnetism: summary

◮ Exchange coupling constants Jij in clusters differ from the
bulk, with no obvious systematics (⇒ one has to calculate
them. . . )

◮ Magnetization M(T ) curves are more shallow from small
clusters than for large clusters

◮ Magnetization of the outer shells decreases with temperature
more quickly than magnetizatin of inner shells (usually. . . )

◮ Critical temperature Tc oscillates with cluster size

Further reading:
Polesya et al. EPL 74 1074 (2006)
Šipr et al. JPCM 19, 446205 (2007)
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X-ray absorption spectroscopy of clusters



X-ray absorption spectroscopy howto

◮ X-rays go in, x-rays go out, absorption coefficient is measured
as a function the energy of the incoming x-rays

x-rays in
x-rays out

sample


◮ Most of the absorption goes on account of the photoelectric
effect on core electrons

◮ By tuning the energy of incoming x-rays, electrons from one
core level only participate

◮ Chemical selectivity

◮ Dipole selection rule
◮ Angular-momentum selectivity
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XMCD howto

◮ XMCD (X-ray Magnetic Circular Dichroism):
sample is magnetized, measure the difference between
absorption of left and right circularly polarized x-rays

magnetization

photon helicity

parallel

antiparallel

x-rays

◮ Helicity of the incoming photons is parallel or antiparallel with
the cluster magnetization M (coincides with the [001]
direction in the parental crystal)
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What can XMCD do for us?

◮ XMCD spectroscopy probes the magnetic properties of
materials

◮ Through the sum rules, XMCD can inform about µspin and
µorb separately

◮ L2,3 edge: sum rules give access to the d components of µspin

and µorb (for transition metals, that’s what we want)

◮ K edge: sum rule gives access to the p component of µorb

◮ Employing sum rules on experimental data may require
substantial theoretical input

◮ Theoretical modelling should provide an intuitive
understanding of what is going on
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L2,3 edge of magnetic TM systems
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Some more details

◮ Spectrum of cluster is a superposition of spectra at edges of
individual atoms

◮ The spectra do not depend on the direction of M

◮ magnetic anisotropy in bcc-like Fe clusters is practically
negligible

◮ average of µorb over all atoms does not depend on M either

◮ Core hole neglected
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L2,3 edge XAS of clusters

• No significant variation with cluster
size

◮ Fine structure just after the L3

white line — presence of truly
discrete states (vaccum level is
5–8 eV above EF )

◮ Smoothening of peaks for larger
clusters
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white line — presence of truly
discrete states (vaccum level is
5–8 eV above EF )

◮ Smoothening of peaks for larger
clusters
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L2,3 edge XMCD of clusters

◮ Similar shape for clusters and for
the bulk

◮ Peak intensity systematically
decreases and peak width increases
with increasing cluster size

◮ No systematic variations for areas
of peaks (cluster magnetization
oscillates with cluster size)

◮ Small yet distinct positive hump
just after the main L3 peak
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Fe(001) surface                    Fe2Cu6 (001) multilayer

[Wu et al. PRL 71, 3581 (1993)]            [Guo et al PRB 50, 3861 (1994)]

Calculated XMCD of Fe surface or multilayers exhibit quite a
pronounced fine structure at the Fe L3 and L2 edges.
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Where have all the structures gone ?
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The wiggles in XMCD mutually cancel !
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Sum rules can be checked
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chosen so that there are exactly
10 electron states up to Ecut in the
d band
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◮ Some deviations in absolute values [up to 20% for
(µspin + 7Tz)/nh]

◮ Yes, application of sum rules to supported clusters makes
sense !
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XAS and XMCD of clusters: summary

◮ Difference between electronic structure of Fe clusters and of a
Fe crystal is reflected by the difference in their XMCD

◮ The L2,3 edge XMCD of the clusters differ from the bulk only
quantitatively through higher intensities of the dominant
peaks.

◮ Small yet distinct positive hump just after the L3 peak — a
marker of “clusterization” in XMCD spectra?

◮ XMCD sum rules can be applied for clusters, especially if the
trends are in focus

Further reading: Šipr & Ebert PRB 72, 134406 (2005)
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Cluster physics in a nutshell

◮ Anything that can oscillate, will oscillate

◮ Substrate makes the clusters to behave

◮ Using bulk data (potentials, exchange constants, . . . ) for
cluster calculations does no good

◮ Look for trends, not for values
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