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Motivation

Magnetism is about ordering of magnetic moments

Rule of thumb for studying different geometries:

follow the coordination number !

Lowering the coordination number
→ increase of magnetic moments → enhanced magnetization
→ decrease of coupling → reduced magnetization

When comparing surfaces with bulk:

competition between enhancement of magnetic moments
and reduction of their coupling
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Bulk, surfaces, clusters, . . .

Clusters contain a large portion of surface atoms

However, their properties cannot be expressed as a mere linear
combination of surface and bulk contributions

Finite cluster dimensions and associated quantum size effects are
significant factors

⇒ intuition has a limited role

⇒ one has to perform calculations for the real stuff
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Systems to be studied

Free spherical Fe clusters, geometry taken as if cut from a bcc Fe
crystal

Cluster sizes: between 9 atoms (1 coordination shell) and
89 atoms (7 coordinations shells)

center

1st shell

2nd shell

3rd shell

Fe cluster
27 atoms

view in Z direction

shells atoms radius [a.u.]

1 9 4.70
2 15 5.42
3 27 7.67
4 51 8.99
5 59 9.39
6 65 10.85
7 89 11.82
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Calculations for T =0

Ab-initio within LDA framework (material specific)

Scalar-relativistic real-space spin-polarized multiple-scattering
formalism

Atomic sphere approximation (ASA)

Using SPRKKR code
http://olymp.cup.uni-muenchen.de/ak/ebert/SPRKKR
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Calculations for T 6=0

For localized moments, finite-temperature magnetism can be described
by a classical Heisenberg hamiltonian

Heff = −
∑

i6=j

Jij ei · ej ei ej
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Mapping DFT onto Heisenberg

Coupling constants Jij can be obtained from ground-state electronic
properties:

Jij = −
1

4π
Im

∫ EF

dE Tr
[

(t−1

i↑ − t−1

i↓ ) τ
ij
↑ (t−1

j↑ − t−1

j↓ ) τ
ji
↓

]

[Liechtenstein et al. JMMM 67, 65 (1987)]

Valid only if magnetism can be described by localized magnetic
moments (fine for Fe)
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From Jij to M(T )

Mean magnetization M(T ) of a system described by a classical
Heisenberg hamiltonian is

M(T ) =

∑

k Mk exp(− Ek

kBT
)

∑

k exp(− Ek

kBT
)

Mk is the magnetization of the system for a particular
configuration k of the directions of spins

Ek is the energy of configuration k

Practical evaluation: Monte Carlo method with the importance
sampling Metropolis algorithm

For bulk Fe, this procedure yields finite-temperature results that are
in a good agreement with experiment [Pajda et al. PRB 64, 174402
(2001)]
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Fe clusters at T =0
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Average magnetic moment of clusters oscillates with cluster size

Local magnetic moments increase when going from the center
outwards in an oscillatory way

Further reading: O. Šipr et al. Phys. Rev. B 70, 174423 (2004)
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Jij in bulk and in clusters
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Site-dependence of
∑

j Jij

Total strength with which one spin (at site i) is held in its direction:

Energy needed to flip the spin of atom i while keeping all the remaining
spins collinear:

Ji =
∑

j 6=i

Jij

Mild differences in Jij translate into large differences in
∑

j Jij

No systematics in cluster size,
no systematics in the position of atom within a cluster

– p.12/19



Site-dependence of
∑

j Jij

0 2 4 6 8 10 12
distance of atom i from the center of the cluster [a.u.]

100

200

300

su
m

of
al

lc
ou

pl
in

g
pa

ra
m

et
er

s
J i

=
j
J i

j
[m

eV
]

15

cluster of 15 atoms

Total coupling of a particular atom

Mild differences in Jij translate into large differences in
∑

j Jij

No systematics in cluster size,
no systematics in the position of atom within a cluster

– p.12/19



Site-dependence of
∑

j Jij

0 2 4 6 8 10 12
distance of atom i from the center of the cluster [a.u.]

100

200

300

su
m

of
al

lc
ou

pl
in

g
pa

ra
m

et
er

s
J i

=
j
J i

j
[m

eV
]

51

15

cluster of 15 atoms
cluster of 51 atoms

Total coupling of a particular atom

Mild differences in Jij translate into large differences in
∑

j Jij

No systematics in cluster size,
no systematics in the position of atom within a cluster

– p.12/19



Site-dependence of
∑

j Jij

0 2 4 6 8 10 12
distance of atom i from the center of the cluster [a.u.]

100

200

300

su
m

of
al

lc
ou

pl
in

g
pa

ra
m

et
er

s
J i

=
j
J i

j
[m

eV
]

89

51

15

cluster of 15 atoms
cluster of 51 atoms
cluster of 89 atoms

Total coupling of a particular atom

Mild differences in Jij translate into large differences in
∑

j Jij

No systematics in cluster size,
no systematics in the position of atom within a cluster

– p.12/19



Site-dependence of
∑

j Jij

0 2 4 6 8 10 12
distance of atom i from the center of the cluster [a.u.]

100

200

300

su
m

of
al

lc
ou

pl
in

g
pa

ra
m

et
er

s
J i

=
j
J i

j
[m

eV
]

89

51

15

bulk

cluster of 15 atoms
cluster of 51 atoms
cluster of 89 atoms
crystal

Total coupling of a particular atom

Mild differences in Jij translate into large differences in
∑

j Jij

No systematics in cluster size,
no systematics in the position of atom within a cluster

– p.12/19



Decay of magnetization with T
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Experimental and theoretical M(T )
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Caution:
Each experimental curve corresponds to a range of cluster sizes
(it represents an average over several M(T ) curves which may differ
quite a lot one from another)
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M as function of cluster size
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Dependence of M on cluster size does not really vary with T for
low (“experimental”) temperatures

For large T , magnetization of large clusters is significantly reduced
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Dependence of Tc on cluster size

0 200 400 600 800 1000 1200
temperature T [K]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
ea

n
m

ag
ne

tiz
at

io
n

M
(T

)
[

B
]

59

8989 atoms, theory
59 atoms, theory

M(T) and its derivative

Critical temperature Tc defined as the inflection point of M(T )

curves (no phase transition for finite systems)

Tc oscillates with cluster size

Proper cluster-adjusted Jij have to be taken into account

– p.16/19



Dependence of Tc on cluster size

0 50 100 150 200
cluster size (number of atoms)

0

200

400

600

800

1000

1200

cr
iti

ca
lt

em
pe

ra
tu

re
T

c
[K

]

bulk

clusters

clusters, calculated with proper Jij

crystal

0 200 400 600 800 1000 1200
temperature T [K]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
ea

n
m

ag
ne

tiz
at

io
n

M
(T

)
[

B
]

59

8989 atoms, theory
59 atoms, theory

M(T) and its derivative

Critical temperature Tc defined as the inflection point of M(T )

curves (no phase transition for finite systems)

Tc oscillates with cluster size

Proper cluster-adjusted Jij have to be taken into account

– p.16/19



Dependence of Tc on cluster size

0 50 100 150 200
cluster size (number of atoms)

0

200

400

600

800

1000

1200

cr
iti

ca
lt

em
pe

ra
tu

re
T

c
[K

]

bulk

proper Jij

bulk-like Jij

clusters, calculated with bulk-like Jij

clusters, calculated with proper Jij

crystal

0 200 400 600 800 1000 1200
temperature T [K]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

m
ea

n
m

ag
ne

tiz
at

io
n

M
(T

)
[

B
]

59

8989 atoms, theory
59 atoms, theory

M(T) and its derivative

Critical temperature Tc defined as the inflection point of M(T )

curves (no phase transition for finite systems)

Tc oscillates with cluster size

Proper cluster-adjusted Jij have to be taken into account

– p.16/19



Shell-resolved magnetization

Expectations:

outer shells have smaller coordination numbers than inner shells

⇒ M in outer shells should decay more quickly with T

than M of inner shells

Projecting M of a shell onto
the direction of the total M

of the 89-atom cluster

(Projections are normalized
to T =0)

Not monotonous in order of shells

Although M of outer shells usually decays faster than M of inner
shells, no systematics can be found.
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Magnetic profile for T 6=0
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even for large T (i.e., no drastic decrease of surface M )
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Summary

Exchange coupling constants Jij in clusters differ from the bulk,
with no obvious systematics

Magnetization M(T ) curves are more shallow for small clusters
than for large clusters

For large T , magnetization of large clusters is significantly reduced

Critical temperature Tc oscillates with cluster size

(Normalized) M of the outer shells usually decreases with T more
quickly than M of inner shells

Simple models (such as taking Jij from bulk) do not work,
systematical trends cannot be guessed beforehand

⇒ one really has to calculate all the quantities of interest
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