Influence of interface mixing on magnetism of Au_4Co_{11} multilayers

O. Šipr 1 , J. Minár 2 , H. Ebert 2

¹ Institute of Physics, Academy of Sciences CR, Prague, Czech Republic
² Universität München, Department Chemie, München, Germany

- Few thoughts on Au/Co multilayers
- **J** Au $L_{2,3}$ edge XMCD of Au₄Co₁₁ multilayer

- Few thoughts on Au/Co multilayers
- **J** Au $L_{2,3}$ edge XMCD of Au₄Co₁₁ multilayer
 - Crash course in x-ray magnetic circular dichroism (XMCD)

- Few thoughts on Au/Co multilayers
- Au $L_{2,3}$ edge XMCD of Au₄Co₁₁ multilayer
 - Crash course in x-ray magnetic circular dichroism (XMCD)
 - Geometry model for Au_4Co_{11}

- Few thoughts on Au/Co multilayers
- Au $L_{2,3}$ edge XMCD of Au₄Co₁₁ multilayer
 - Crash course in x-ray magnetic circular dichroism (XMCD)
 - Geometry model for Au₄Co₁₁
 - (Really) just a bit of theory

- Few thoughts on Au/Co multilayers
- Au $L_{2,3}$ edge XMCD of Au₄Co₁₁ multilayer
 - Crash course in x-ray magnetic circular dichroism (XMCD)
 - Geometry model for Au_4Co_{11}
 - (Really) just a bit of theory
 - XMCD spectra for various degrees of interdiffusion

- Few thoughts on Au/Co multilayers
- Au $L_{2,3}$ edge XMCD of Au₄Co₁₁ multilayer
 - Crash course in x-ray magnetic circular dichroism (XMCD)
 - Geometry model for Au_4Co_{11}
 - (Really) just a bit of theory
 - XMCD spectra for various degrees of interdiffusion
- Local magnetic moments

- Few thoughts on Au/Co multilayers
- Au $L_{2,3}$ edge XMCD of Au₄Co₁₁ multilayer
 - Crash course in x-ray magnetic circular dichroism (XMCD)
 - Geometry model for Au_4Co_{11}
 - (Really) just a bit of theory
 - XMCD spectra for various degrees of interdiffusion
- Local magnetic moments
- Sum rules and related quantities

- Few thoughts on Au/Co multilayers
- Au $L_{2,3}$ edge XMCD of Au₄Co₁₁ multilayer
 - Crash course in x-ray magnetic circular dichroism (XMCD)
 - Geometry model for Au_4Co_{11}
 - (Really) just a bit of theory
 - XMCD spectra for various degrees of interdiffusion
- Local magnetic moments
- Sum rules and related quantities
- Correlation of local magnetic moments with coordination numbers

- Few thoughts on Au/Co multilayers
- Au $L_{2,3}$ edge XMCD of Au₄Co₁₁ multilayer
 - Crash course in x-ray magnetic circular dichroism (XMCD)
 - Geometry model for Au_4Co_{11}
 - (Really) just a bit of theory
 - XMCD spectra for various degrees of interdiffusion
- Local magnetic moments
- Sum rules and related quantities
- Correlation of local magnetic moments with coordination numbers
- Summary

Co/Au(111) systems have been studied by dozens of methods

- Co/Au(111) systems have been studied by dozens of methods
- Magnetization direction depends on the film thickness

- Co/Au(111) systems have been studied by dozens of methods
- Magnetization direction depends on the film thickness
- Uncertainty concerning the thickness at which the magnetization direction switches (conflicting experiments)

- Co/Au(111) systems have been studied by dozens of methods
- Magnetization direction depends on the film thickness
- Uncertainty concerning the thickness at which the magnetization direction switches (conflicting experiments)
- Large lattice mismatch (~14%) between Co and Au(111) geometry rearrangements may play a role

- Co/Au(111) systems have been studied by dozens of methods
- Magnetization direction depends on the film thickness
- Uncertainty concerning the thickness at which the magnetization direction switches (conflicting experiments)
- Large lattice mismatch (~14%) between Co and Au(111) geometry rearrangements may play a role
- This study approaches the system from the other direction: Au as the starting point

x-rays go in, x-rays go out, measuring the absorption coefficient as a function the energy of the incoming x-rays

- x-rays go in, x-rays go out, measuring the absorption coefficient as a function the energy of the incoming x-rays
- Energy of incoming x-rays matches binding energy of specific core levels → chemically specific (also dipole selection rule)

- x-rays go in, x-rays go out, measuring the absorption coefficient as a function the energy of the incoming x-rays
- Energy of incoming x-rays matches binding energy of specific core levels → chemically specific (also dipole selection rule)
- X-ray Magnetic Circular Dichroism: sample is magnetized, measuring the difference between the absorption of left and right circularly polarized x-rays

- x-rays go in, x-rays go out, measuring the absorption coefficient as a function the energy of the incoming x-rays
- Energy of incoming x-rays matches binding energy of specific core levels → chemically specific (also dipole selection rule)
- X-ray Magnetic Circular Dichroism: sample is magnetized, measuring the difference between the absorption of left and right circularly polarized x-rays
- Sensitive to magnetism at atoms of one chemical type at a time

- x-rays go in, x-rays go out, measuring the absorption coefficient as a function the energy of the incoming x-rays
- Energy of incoming x-rays matches binding energy of specific core levels → chemically specific (also dipole selection rule)
- X-ray Magnetic Circular Dichroism: sample is magnetized, measuring the difference between the absorption of left and right circularly polarized x-rays
- Sensitive to magnetism at atoms of one chemical type at a time
 - L_3 edge: Electrons go from Au $2p_{3/2}$ core level into unoccupied states (which have a *d* symmetry with respect to Au site)

- x-rays go in, x-rays go out, measuring the absorption coefficient as a function the energy of the incoming x-rays
- Energy of incoming x-rays matches binding energy of specific core levels → chemically specific (also dipole selection rule)
- X-ray Magnetic Circular Dichroism: sample is magnetized, measuring the difference between the absorption of left and right circularly polarized x-rays
- Sensitive to magnetism at atoms of one chemical type at a time
 - L_3 edge: Electrons go from Au $2p_{3/2}$ core level into unoccupied states (which have a *d* symmetry with respect to Au site)
 - L_2 edge: Electrons go from Au $2p_{1/2}$ core level into unoccupied states (which have a *d* symmetry with respect to Au site)

- x-rays go in, x-rays go out, measuring the absorption coefficient as a function the energy of the incoming x-rays
- Energy of incoming x-rays matches binding energy of specific core levels → chemically specific (also dipole selection rule)
- X-ray Magnetic Circular Dichroism: sample is magnetized, measuring the difference between the absorption of left and right circularly polarized x-rays
- Sensitive to magnetism at atoms of one chemical type at a time
 - L_3 edge: Electrons go from Au $2p_{3/2}$ core level into unoccupied states (which have a *d* symmetry with respect to Au site)
 - L_2 edge: Electrons go from Au $2p_{1/2}$ core level into unoccupied states (which have a *d* symmetry with respect to Au site)
- Probing magnetism induced at the Au sites

Au $L_{2,3}$ edge XMCD was measured for Au₄Co₁₁ [F. Wilhelm *et al.*, Phys. Rev. B **69**, 220404(R) (2004)]

- Au L_{2,3} edge XMCD was measured for Au₄Co₁₁ [F. Wilhelm *et al.*, Phys. Rev. B **69**, 220404(R) (2004)]
- Spectra analyzed via sum rules

- Au L_{2,3} edge XMCD was measured for Au₄Co₁₁ [F. Wilhelm *et al.*, Phys. Rev. B **69**, 220404(R) (2004)]
- Spectra analyzed via sum rules
- Spin moment sum rule for the $L_{2,3}$ edge

$$\int \left(\Delta \mu_{L_3} - 2\Delta \mu_{L_2}\right) \, dE = \frac{N}{3n_h^{(d)}} \left(\mu_{spin}^{(d)} + 7T_z^{(d)}\right)$$

- Au L_{2,3} edge XMCD was measured for Au₄Co₁₁ [F. Wilhelm *et al.*, Phys. Rev. B **69**, 220404(R) (2004)]
- Spectra analyzed via sum rules
- Spin moment sum rule for the $L_{2,3}$ edge

$$\int \left(\Delta \mu_{L_3} - 2\Delta \mu_{L_2}\right) \, dE = \frac{N}{3n_h^{(d)}} \left(\mu_{spin}^{(d)} + 7T_z^{(d)}\right)$$

Orbital moment sum rule for the $L_{2,3}$ edge

$$\int \left(\Delta \mu_{L_3} + \Delta \mu_{L_2}\right) \, dE = \frac{N}{2n_h^{(d)}} \mu_z^{(d)} \, ,$$

- Au L_{2,3} edge XMCD was measured for Au₄Co₁₁ [F. Wilhelm *et al.*, Phys. Rev. B **69**, 220404(R) (2004)]
- Spectra analyzed via sum rules
- Spin moment sum rule for the $L_{2,3}$ edge

$$\int \left(\Delta \mu_{L_3} - 2\Delta \mu_{L_2}\right) \, dE = \frac{N}{3n_h^{(d)}} \left(\mu_{spin}^{(d)} + 7T_z^{(d)}\right)$$

• Orbital moment sum rule for the $L_{2,3}$ edge

$$\int \left(\Delta \mu_{L_3} + \Delta \mu_{L_2}\right) \, dE = \frac{N}{2n_h^{(d)}} \mu_z^{(d)} \, ,$$

F. Wilhelm *et al.* suggest μ_{tot} =0.031 μ_B and μ_{spin}/μ_{orb} =0.12

- Au L_{2,3} edge XMCD was measured for Au₄Co₁₁ [F. Wilhelm *et al.*, Phys. Rev. B **69**, 220404(R) (2004)]
- Spectra analyzed via sum rules
- **Spin moment sum rule for the** $L_{2,3}$ edge

$$\int \left(\Delta \mu_{L_3} - 2\Delta \mu_{L_2}\right) \, dE = \frac{N}{3n_h^{(d)}} \left(\mu_{spin}^{(d)} + 7T_z^{(d)}\right)$$

• Orbital moment sum rule for the $L_{2,3}$ edge

$$\int \left(\Delta \mu_{L_3} + \Delta \mu_{L_2}\right) \, dE = \frac{N}{2n_h^{(d)}} \mu_z^{(d)} \, ,$$

- F. Wilhelm *et al.* suggest μ_{tot} =0.031 μ_B and μ_{spin}/μ_{orb} =0.12
- Let us have a look . . .

Geometry model

- fcc geometry, (111) interface, ABC stacking
- Intra-planar interatomic distances are identical for each layer (weighted average of Au and Co crystals)
- Distances between layers taken from experiment of F. Wilhelm et al.

Geometry model

- fcc geometry, (111) interface, ABC stacking
- Intra-planar interatomic distances are identical for each layer (weighted average of Au and Co crystals)
- Distances between layers taken from experiment of F. Wilhelm et al.

For comparison, an auxiliary model Co₄Co₁₁ system is used (same geometry, all atoms are Co)

Ab-initio within LDA framework

- *Ab-initio* within LDA framework
- Fully-relativistic spin-polarized multiple-scattering formalism (Dirac equation)

- *Ab-initio* within LDA framework
- Fully-relativistic spin-polarized multiple-scattering formalism (Dirac equation)
- Atomic sphere approximation (ASA)

- *Ab-initio* within LDA framework
- Fully-relativistic spin-polarized multiple-scattering formalism (Dirac equation)
- Atomic sphere approximation (ASA)
- Interdifusion modelled by CPA

- *Ab-initio* within LDA framework
- Fully-relativistic spin-polarized multiple-scattering formalism (Dirac equation)
- Atomic sphere approximation (ASA)
- Interdifusion modelled by CPA
- SPR-KKR CODE http://olymp.cup.uni-muenchen.de/ak/ebert/SPRKKR

- *Ab-initio* within LDA framework
- Fully-relativistic spin-polarized multiple-scattering formalism (Dirac equation)
- Atomic sphere approximation (ASA)
- Interdifusion modelled by CPA
- SPR-KKR CODE http://olymp.cup.uni-muenchen.de/ak/ebert/SPRKKR
- TB-SPR-KKR CODE http://olymp.cup.uni-muenchen.de/ak/ebert/SPR-TB-KKR

clean interface

clean interface

interdiffusion across 2 layers (70% - 30%)

clean interface

interdiffusion across 2 layers (70% - 30%)

interdiffusion across 4 layers (70% - 55% - 45% - 30%)

clean interface

interdiffusion across 2 layers (70% - 30%)

interdiffusion across 4 layers (70% - 55% - 45% - 30%)

single atom impurity

Local moments inside Au spheres

• p-component of μ_{spin} , d-component of μ_{spin} , d-component of μ_{orb}

Local moments inside Au spheres

More Co means more magnetism

Local moments inside Co spheres

p-component of μ_{spin} , d-component of μ_{spin} , d-component of μ_{orb}

Local moments inside Co spheres

Latice expansion enhances magnetism

Local moments inside Co spheres

- Latice expansion enhances magnetism
- Chemistry complicates the geometry

Quantities related to sum rules

Quantities related to sum rules

– p.11/18

Spin moment sum rule for Au sites

Spin moment sum rule for Au sites

Variations of $n_{holes}^{(d)}$ and $T_z^{(d)}$ do not really matter

Orbital moment sum rule for Au sites

Orbital moment sum rule for Au sites

Spin moment sum rule for Co sites

Spin moment sum rule for Co sites

Variations of $n_{holes}^{(d)}$ and $T_z^{(d)}$ matter quite a lot ...

Orbital moment sum rule for Co sites

Orbital moment sum rule for Co sites

 $T_z^{(d)}$ contributes but not drastically

Dependence on coordination no.: Au

Magnetic moments of Au atoms in Au₄Co₁₁ multilayer

Dependence on coordination no.: Co

Differences between the true Au₄Co₁₁ multilayer and the auxiliary Co₄Co₁₁ model system: $\Delta \mu_{spin}^{(p)}$, $\Delta \mu_{spin}^{(d)}$, and $\Delta \mu_{orb}^{(d)}$ at Co sites as function of the number of neighboring Au atoms

Difference of magnetic moments of Co atoms in Au_4Co_{11} multilayer and in a Co_4Co_{11} model system

There has to be a significant interdiffusion at the Co/Au interface, otherwise XMCD experiments do not make sense

- There has to be a significant interdiffusion at the Co/Au interface, otherwise XMCD experiments do not make sense
- Interpreting XMCD experiments by means of sum rules possible only if variations of $n_{holes}^{(d)}$ and $T_z^{(d)}$ are taken into account

- There has to be a significant interdiffusion at the Co/Au interface, otherwise XMCD experiments do not make sense
- Interpreting XMCD experiments by means of sum rules possible only if variations of $n_{holes}^{(d)}$ and $T_z^{(d)}$ are taken into account

- There has to be a significant interdiffusion at the Co/Au interface, otherwise XMCD experiments do not make sense
- Interpreting XMCD experiments by means of sum rules possible only if variations of $n_{holes}^{(d)}$ and $T_z^{(d)}$ are taken into account
- Competition between geometry and chemistry for magnetic moments of Co atoms:

- There has to be a significant interdiffusion at the Co/Au interface, otherwise XMCD experiments do not make sense
- Interpreting XMCD experiments by means of sum rules possible only if variations of $n_{holes}^{(d)}$ and $T_z^{(d)}$ are taken into account
- Competition between geometry and chemistry for magnetic moments of Co atoms:
 - Proximity of Au atoms expands the lattice \rightarrow enhancement of magnetism

- There has to be a significant interdiffusion at the Co/Au interface, otherwise XMCD experiments do not make sense
- Interpreting XMCD experiments by means of sum rules possible only if variations of $n_{holes}^{(d)}$ and $T_z^{(d)}$ are taken into account
- Competition between geometry and chemistry for magnetic moments of Co atoms:
 - Proximity of Au atoms expands the lattice \rightarrow enhancement of magnetism
 - Having Au atoms as neighbors suppresses magnetism