Impact of the magnetic dipole term T_z on x-ray magnetic circular dichroism spectra of low-dimensional systems

When you can get rid of it and when you cannot

O. $\check{S}ipr^1$ H. Ebert² J. Minár³

¹Institute of Physics, Czech Academy of Sciences, Praha
²Department Chemie, Ludwig-Maximilians-Universität, München
³NTC-CEDAMNF, University of West Bohemia, Pilsen

Outline

- ▶ What is it the *T_z* term and why to care about it?
- What kind of mess can the T_z term cause?
- When you can get rid of the T_z term and when you cannot.

Low-dimensional systems and magnetism

- Low-dimensional systems have on average smaller coordination number than bulk systems.
 - Lower coordination number means larger magnetic moment per atom.
- Low-dimensional systems have large magnetocrystalline anisotropy per atom.
- Investigating magnetism of clusters is difficult because of small amount of material.
 - ► ⇒ Chemically-specific spectroscopic methods are in high demand.

Difference between absorption of left- and right-circularly polarized x-rays in a magnetized sample.

Spin-orbit coupling (SOC) is necessary for XMCD.

Spin and orbital magnetic moments

(A quick and dirty introduction to magnetism.)

```
    Spinning:
    μ<sub>spin</sub>
    usually large, ~2.2 μ<sub>B</sub> for Fe
```


 $\mu_{
m orb}$ usually small, ${\sim}0.1~\mu_B$ for Fe

Important for links to magnetocrystalline anisotropy.

Typical $L_{2,3}$ edge XAS and XMCD for transition metals

Typical $L_{2,3}$ edge XAS and XMCD for transition metals

 $\mu_{\rm spin}$ comes only in combination with $7T_z$

XMCD sum rule for the $L_{2,3}$ edge spectra:

$$\frac{\mu_{\rm spin} + 7T_z}{n_h} \sim \int \left(\Delta \mu_{L_3} - 2\Delta \mu_{L_2}\right) \, \mathrm{d}E$$

Magnetic dipole term: $T_z = \langle \hat{T}_z \rangle = \langle \frac{1}{2} [\boldsymbol{\sigma} - 3\hat{\mathbf{r}} (\hat{\mathbf{r}} \cdot \boldsymbol{\sigma})]_z \rangle$

Magnetic dipole term depends on the orientation of the magnetization, better to speak about " T_{α} term."

What to think about magnetic dipole T_{α} term?

- *T_α* is a measure of the intra-atomic asphericity of the spin moment.
- For bulk systems T_{α} is usually negligible.
- ► For surfaces, monolayers or wires, $7T_{\alpha}$ is about 20 % of μ_{spin} ⇒ T_{α} matters for low-dimensional systems!

Do we really need to care about T_z ?

- ► For investigating trends of magnetism for a series of systems, what matters is how T_z varies from one system to another.
 - If variations in T_z are small, T_z can be neglected (it would cause just an overall shift of the deduced values of μ_{spin}).
 - Can T_z vary in such a way that the overall trends of $\mu_{spin}+7T_z$ and μ_{spin} would be quite different ?

Calculational procedure

- Ab-initio, fully relativistic, LDA, SPRKKR code http://olymp.phys.chemie.uni-muenchen.de/ak/ebert/SPRKKR [Ebert et al. Rep. Prog. Phys. 2011].
- Embedded impurity Green's function formalism: no need for supercells.

Series of supported clusters

 \blacktriangleright For each cluster, evaluate average $\mu_{\rm spin}$

$$\frac{1}{N} \sum_{j=1}^{N} \mu_{\mathrm{spin}}^{(j)}$$

and average XMCD-rules-related-quantity $[\mu_{\rm spin}+7T_z]/n_h$

$$\frac{1}{N} \sum_{j=1}^{N} \frac{\mu_{\rm spin}^{(j)} + 7 T_z^{(j)}}{n_h^{(j)}}$$

٠

► Compare how μ_{spin} and $[\mu_{spin} + 7T_z]/n_h$ depend on the cluster size.

Compact Fe_N and Co_N clusters on metal surfaces

Clusters on Ni(001) N=1-9

Results: $\mu_{\rm spin}$ and $[\mu_{\rm spin} + 7T_z]/n_h$ for compact clusters

Results: $\mu_{\rm spin}$ and $[\mu_{\rm spin} + 7T_z]/n_h$ for compact clusters

$Co_N/Au(111)$: T_z changes the picture completely!

► For Co_N clusters on Au(111), the trends of μ_{spin} and of $[\mu_{spin} + 7T_z]/n_h$ are exactly opposite.

 Ignoring variations in *T_z* would lead to a false estimate of how μ_{spin} per atom depends on the cluster size.

 T_{lpha} can (falsely) make $\mu_{
m spin}$ to look anisotropic

Co adatom and Co monolayer on Pd(111), varying the direction of the magnetization.

 $\mathbf{M} \| z$

1				
adatom		$\mu_{\rm spin} \left[\mu_B \right]$	$\mu_{\rm spin} + 7 T_{\alpha} \ [\mu_B]$	
••••	M <i>xy</i>	2.47	2.65	
	M ∥ <i>z</i>	2.47	2.11	
nonolayer		$\mu_{\rm spin} \left[\mu_B \right]$	$\mu_{\rm spin} + 7 T_{\alpha} \ [\mu_B]$	
00000	M <i>xy</i>	2.02	2.26	

2.02

r

1.56

Quest for a T_{α} -free XMCD measurement (1)

 T_{α} -free measurement is feasible for systems where the effect of SOC on T_{α} can be neglected.

$$T_{lpha} = -rac{\mu_B}{\hbar} \left\langle \sum_{eta} Q_{lphaeta} S_{eta} \right
angle$$

 $Q_{\alpha\beta} = \delta_{\alpha\beta} - 3r_{\alpha}^0 r_{\beta}^0$ is the quadrupole moment, S_{α} is the spin.

If the SOC is neglected, one can decouple $Q_{\alpha\beta}$ from S_{β} ,

$$T_{lpha} = -rac{\mu_{B}}{\hbar} \, \sum_{eta} \langle \mathcal{Q}_{lphaeta}
angle \, \langle \mathcal{S}_{eta}
angle \, .$$

[Stöhr & König PRL75, 3748 (1995), Stöhr JMMM 200, 470 (1999)]

Quest for a T_{α} -free XMCD measurement (2)

• If the SOC is neglected, average of T_{α} is zero:

$$T_x + T_y + T_z = 0 .$$

- One can get rid of T_z by doing three XMCD measurements for perpendicular magnetization directions and taking the average.
- If the SOC is neglected, T_{α} vanishes at the magic angle $\theta = 54^{\circ}$ between the magnetization and the symmetry axis.

[König & Stöhr PRL **75**, 3748 (1995), Stöhr JMMM **200**, 470 (1999), Ederer *et al.* JESRP **130**, 97 (2003)]

Can the effect of SOC on T_{α} be neglected?

A tell-tale sign that the SOC cannot be neglected is breakdown of the $T_x + T_y + T_z = 0$ equation.

• Experimental evidence that SOC matters: deviations from the $T_x + T_y + T_z = 0$ rule observed for magnetite nanoparticles in the monoclinic low-temperature phase.

[Schmitz et al. Sci. Rep. 4, 5760 (2014)]

Series of Co monolayers and adatoms

Substate: Cu, Pd, Ag, Pt, and Au (111) surfaces.

Different substrate properties:

Low polarizability: Cu, Ag, Au

Small SOC: Cu High polarizability: Pd, Pt

Large SOC: Pt, Au

The $T_x + T_y + T_z = 0$ criterion

Compare $\frac{\sum_{\alpha} 7T_{\alpha}}{\mu_{spin}}$ for different systems: the smaller, the better.

	monolayer	adatom	
Co / Cu(111)	0.011	0.206	SOC is <i>nominally</i> small yet
Co / Pd(111)	0.015	0.072	
Co / Ag(111)	0.021	0.372	
Co / Pt(111)	0.008	0.098	
Co / Au(111)	0.009	0.284	

Dimensionality is more important than the SOC in the substrate.

SOC strength ξ is to be compared to the bandwidth.

Why SOC sometimes matters and sometimes not?

Bandwidth is determined by hybridization, i.e., by overlap between DOS of the adsorbate and DOS of the substrate.

Majority-spin states mostly occupied, therefore it is the incompletely occupied minority-spin states which matter.

SOC strength compared to the bandwidth DOS overlap integral: $h^{(s)} \equiv \int dE n^{(s)}_{CO}(E) n^{(s)}_{subs}(E)$

	relative weight of	relative weight of
substrate	\sum_lpha 7 $T_lpha/\mu_{\sf spin}$	$1/\int \mathrm{d}E n_{Co}^{\downarrow}(E) n_{subs}^{\downarrow}(E)$
Cu(111)	0.181	0.197
Pd(111)	0.061	0.091
Ag(111)	0.390	0.324
Pt(111)	0.092	0.117
Au(111)	0.276	0.269

Co adatom on (111) surfaces:

Importance of SOC increases if the bandwidth decreases.

Small hybridization between adatom and substrate means that the effect of SOC on T_z cannot be neglected.

Message to the mankind

- Magnetic dipole term T_z is not just a minor pseudo-additive factor that affects the XMCD.
 - Intuition may not be enough when analyzing XMCD spectra of low-dimensional systems.
 - Knowing how T_z varies with cluster size is essential for applying XMCD spin sum rule.
- For small supported systems such as adatoms and clusters, the T_α-eliminating relation
 T_x + T_y + T_z = 0
 cannot be relied on.
 - ► The nasty T_z term cannot be eliminated via the magic angle or the T_x + T_y + T_z = 0 relation in situations when it would be mostly needed. (2)

Message to the mankind

- Magnetic dipole term T_z is not just a minor pseudo-additive factor that affects the XMCD.
 - Intuition may not be enough when analyzing XMCD spectra of low-dimensional systems.
 - Knowing how T_z varies with cluster size is essential for applying XMCD spin sum rule.
- For small supported systems such as adatoms and clusters, the T_α-eliminating relation
 T_x + T_y + T_z = 0
 cannot be relied on.
 - ► The nasty T_z term cannot be eliminated via the magic angle or the T_x + T_y + T_z = 0 relation in situations when it would be mostly needed.

