Differences in XANES of isostructural and isoelectronic delafossites When similar systems have different XANES

O. Šipr¹, F. Rocca², A. Šimůnek¹ and P. Fornasini³

1: Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, CZ-162 53 Prague, Czech Republic 2: IFN-CNR, Istituto di Fotonica e Nanotecnologie del CNR, Sezione "FBK-CeFSA" di Trento, Via alla Cascata 56/C, I-38123 Povo (Trento), Italy 3: Dipartimento di Fisica, Università di Trento, Via Sommarive 14, I-38123 Povo (Trento), Italy

sipr@fzu.cz http://www.fzu.cz/~sipr

Introduction

• Materials with similar structure and similar chemical properties are expected to have similar XANES.

– Trigonal CuScO₂ and CuLaO₂ are isostructural and isoelectronic (Sc and La belong to the same column), hence their Cu *K*-edge XANES should be very similar.

Structure

cluster of 27 atoms

Isotropic and polarized Cu K-edge XANES

• Delafossites may help in understanding XANES of other Cu oxides: possibility to study spectra of linearly coordinated monovalent Cu with O-Cu-O units pointing all in the same direction.

Motivation

Interesting and unexpected differences observed in Cu K-edge XANES of CuScO₂ and CuLaO₂.

Aim of the study

- Analyze origin of these differences in terms of the polarization dependence of the spectra and of the scattering properties of atoms.
- Implications for the role of the pre-peak in other monovalent Cu compounds?

- Trigonal (rhombohedral) symmetry
- Distances along c axis nearly identical for $CuScO_2$ and $CuLaO_2$, distances in the *ab* plane larger for CuLaO₂ by 20%

	N	$CuScO_2$	CuLaO ₂	Cu_2O
Cu–O	2	1.80	1.85	1.85
Cu–Cu	6	3.22	3.83	3.02
Cu–M	6	3.40	3.61	3.02

Distances between Cu and its neighbors (in Å). The M atom is Sc in $CuScO_2$, La in $CuLaO_2$ and Cu in Cu_2O .

Experimental and theoretical Cu K-edge XANES of powder Left panels: CuScO₂ and CuLaO₂. Right panels: Theoretical polarized Cu *K*-edge XANES of CuScO₂ and CuLaO₂ monocrystals.

Experiment

- Fine powders on polytetrafluoroethylene membranes.
- Transmission measurements at Gilda beam-line at ESRF.
- See Ahmed *et al.* PRB **79**, 104302 (2009) for details.

Scattering phase shifts of analogous atoms, Sc–La substitution

- Differences in phase shifts of Sc and $La \Rightarrow$ differences in XANES of CuScO₂ and CuLaO₂.
- Phase shifts for La and for Lu are similar \Rightarrow low-lying empty 4*f* states in La are *not* essential.

Theory

- Ab-initio real-space calculations.
- Muffin-tin potentials taken from self-consistent calculations for clusters of 24–27 atoms embedded in a crystal.
- Energy-independent $X\alpha$ potential with α =0.67.

Alignment of the energy ranges

- Appropriate scaling of energy ranges suppresses differences in XANES which stem from different lattice constants.
- Features at E_1 and E'_1 for one compound and at E_2 and E'_2 for another compound, d_1 and d_2 characteristic distances:

 $(E_1 - E_1') d_1^2 = (E_2 - E_2') d_2^2$.

- Cu *K*-edge XANES of a hypothetical $CuLaO_2$ with the geometry of $CuScO_2$:
- $-\varepsilon \|ab$ spectral component resembles the $\varepsilon \parallel ab$ component of true CuScO₂ (geometry dominates),
- $-\varepsilon \|c$ spectral component resembles the $\varepsilon \| c$ component of true CuLaO₂ (phase shifts dominate).

geometry of CuLaO₂.

Phase shifts $\sin[\delta_{\ell}(E)]$ for Sc in CuScO₂, La in CuLaO₂ and Lu Theoretical Cu K-edge XANES of a hyin a hypothetical CuLuO₂ with pothetical CuLaO₂ with the geometry of CuScO₂.

Conclusions

- Apparent chemical and structural similarity of compounds does not necessarily imply similarity of their XANES spectra.
- Differences between Cu K-edge XANES of CuScO₂ and CuLaO₂ can be understood if one focuses on the polarizationdependence of the spectra and on differences in Sc and La phase shifts.

Role of specific groups of atoms, pre-peak issues

- Important features of the $\varepsilon ||ab|$ spectrum can be reproduced for cluster of 21 atoms.
- Including the Sc/La atoms does not alter the $\varepsilon \| ab$ spectrum significantly.

Cu *K*-edge of Cu₂O

[JPCM **47**, 9389 (1992)].

- The pre-peak is connected with scattering of the photoelectron in the *ab* plane by at least seven Cu atoms and fourteen O atoms (analogous to the case of Cu K-edgeXANES of Cu_2O).
- Further reading: O. Šipr *et al.* JPCM **21**, 255401 (2009).
- Pre-peak appears only for the $\varepsilon \|ab$ polarization.
- -Analogy with Cu_2O , where the pre-peak is connected with transitions perpendicular to the O–Cu–O axis.
- O–Cu–O chains are parallel to each other in delafossites (unlike in $Cu_2O) \rightarrow asso$ ciation between the pre-peak and states in the *ab* plane could be in principle demonstrated by experiment
- Two kinds of pre-peak in monovalent Cu compounds?
- * Pre-peak appears also in systems with linearly coordinated monovalent Cu with no Cu atoms in the *ab* plane — e.g., in $[Cu(xypz)]_2(BF_4)_2.$

Dependence of theoretical $\varepsilon \parallel ab$ component on the atoms included.

