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Clusters and magnetism: Why people like them ?

◮ Clusters have a high portion of surface atoms ⇒ average
coordination number is smaller than in bulk

◮ Rule of thumb: The lower the coordination number, the larger
the magnetic moment per atom

◮ Thin films and clusters have large magnetocrystalline
anisotropy per atom (that’s what you want for magnetic
recording)
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Clusters and magnetism: Problems . . .

◮ Magnetic properties of large assemblies of clusters are
macroscopic: no principal problems with measuring them

◮ To understand nanomagnetism, one needs to study individual
small systems

◮ Magnetization of individual clusters (of just few atoms)
cannot be measured by macroscopic methods

◮ Recent progress in studying magnetism of clusters is, to a
large extent, associated with analyzing XMCD
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XMCD appeals

XMCD (X-ray Magnetic Circular Dichroism):
sample is magnetized, measure the difference between absorption
of left and right circularly polarized x-rays

magnetization

photon helicity

parallel

antiparallel

x-rays

◮ Chemically selective — one can probe “local” magnetism
connected with particular chemical type of atoms

◮ XMCD sum rules gives access to µspin and µorb separately



Two ways of moving an electron

(A quick and dirty introduction to magnetism)

◮ Spinning:

◮ Orbiting:



Two ways of moving an electron

(A quick and dirty introduction to magnetism)

◮ Spinning:
µspin

usually large, ∼2.2 µB for Fe

◮ Orbiting:
µorb

usually small, ∼0.1 µB for Fe
important for connection with MAE
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XMCD sum rules:

By adding, subtracting and
dividing the peak areas,
chemically-specific µspin, µorb

and µorb/µspin can be obtained

∫

(∆µL3
− 2∆µL2

) dE ∼

µ
(d)
spin + 7T

(d)
z

3n
(d)
h

∫

(∆µL3
+ ∆µL2

) dE ∼

µ
(d)
orb

2n
(d)
h



Problems with sum rules

Approximations involved in its derivation:

◮ Transition to a well-defined single band

◮ Core hole neglected

◮ . . .

◮ Could be at least partly corrected for by renormalization,
scaling and/or varying the L2,3 edge integration ranges

◮ Justified when studying series of related systems:
One can assume that the corrections will be similar for each
member of the series
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Tz term: A feature, not a bug !

3

IA

∫

(∆µL3
− 2∆µL2

) dE =
µspin + 7Tz

nh

IA integrated isotropic absorption spectrum
µspin d component of the local spin magnetic moment
nh number of holes in the d band
Tz d component of magnetic dipole operator

Tz =
〈

T̂z

〉

=
〈

1
2 [σ − 3̂r(̂r · σ)]z

〉

Tz is a measure of the asphericity of spin magnetization

[Stöhr & König PRL 75 3748; Oguchi & Shishidou PRB 70 024412]

µspin can be obtained only in combination with 7Tz !
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Does Tz term really matter ?

◮ For bulk systems it is usually negligible

◮ For surfaces, monolayers or wires, absolute value of 7Tz is
about 20 % of µspin [Wu & Freeman PRL 73 1994 (1994);

Komelj et al. PRB 66 140407(R) (2002)]

◮ For investigating trends of µspin within a series of systems,
what matters is how Tz varies from one system to another

◮ If variations in Tz are small, neglect of Tz causes just an
overall shift of the deduced µspin

◮ Could Tz vary in such a way that the overall trends
of µspin+7Tz and µspin would be quite different ?

◮ Common experience: Variations in nh do not really matter,
their effect is more-or-less negligible
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Our mission

◮ Take a series of supported clusters of different sizes

◮ For each cluster size, evaluate average of d components
of µspin

1
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◮ Compare how µspin and [µspin + 7Tz ]/nh depend on the
cluster size
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Systems (1)

Clusters: FeN , CoN Substrates: Ni(001), Au(111)

Clusters on Ni(001)
N=1–9

Clusters on Au(111)
N=1–7



Systems (2)

Distances between cluster atoms and the substrate taken so that
structural relaxation is partially accounted for:

substrate bulk interlayer surface-to-cluster
distance distance

Ni(001) 1.76 Å 1.85 Å
Au(111) 2.35 Å 1.78 Å

(Obtained from comparing atomic volumes and from other
people’s calculations [Mart́ınez et al. PRB 71 165425 (2002)])

Magnetization M perpendicular to the surface

Complete monolayers N=∞ included as well (as end-points of the
series. . . )
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Calculational procedure for supported clusters

◮ Ab-initio calculations, fully relativistic, LDA, spr-kkr code
http://olymp.phys.chemie.uni-muenchen.de/ak/ebert/SPRKKR

◮ Core hole neglected

◮ Calculate electronic structure of the “host” system (clean
surface)

◮ Tight-binding or screened KKR [Zeller et al. PRB 52 8807]

◮ Supported clusters are treated as a perturbation to the clean
surface [Minár et al. Appl. Physics A 82 139 (2006)]

◮ Green’s function of the new system (cluster plus substrate) is
obtained by solving the Dyson equation

◮ Atomic sphere approximation (ASA), ℓmax=2

http://olymp.phys.chemie.uni-muenchen.de/ak/ebert/SPRKKR
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CoN/Au(111): Tz changes the picture completely !
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◮ For CoN on Au(111), trends of µspin and
of [µspin + 7Tz ]/nh are exactly opposite.

◮ Ignoring variations in Tz would lead to a false
estimate of how µspin per atom depends on
the cluster size
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Have a closer look: effect of EF
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◮ Whether Tz will
be larger for
an ad-atom or
for a monolayer
depends both on
cluster and on
substrate
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d band
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Verifying spin sum rule: [µspin + 7Tz ]/nh via two ways
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◮ Good agreement between evaluating [µspin + 7Tz ]/nh from
electronic structure and from XAS

◮ Spin sum rule itself is valid (at least within the initial state
approximation)



Can the results be trusted?

◮ Dealing not with isolated systems but with whole series of
clusters, spanning from single ad-atoms to complete
monolayers

◮ All the systems treated in the same manner

◮ Conclusions are not crucially sensitive to the accuracy of the
calculations

◮ The fact that µspin and [µspin + 7Tz ]/nh may have opposite
trends has thus been established quite reliably
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Conclusions

◮ Knowing how Tz varies with cluster size is essential for
applying XMCD spin sum rule in clusters

◮ Magnetic dipole term Tz is not just a minor factor that
affects the analysis

◮ Whether the size-dependence of µspin and of [µspin + 7Tz ]/nh

will be opposite or not depends both on the clusters and on
the substrate

◮ At least when analyzing XMCD spectra of Co on noble metal
surfaces (Pt, Au), the influence of Tz definitely should be
taken into account
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Take-home message

Magnetic dipole term Tz is a bad guy. . .
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