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Clusters and magnetism: Why people like them 7

» Clusters have a high portion of surface atoms = average
coordination number is smaller than in bulk
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Clusters and magnetism: Why people like them 7

» Clusters have a high portion of surface atoms = average
coordination number is smaller than in bulk

» Rule of thumb: The lower the coordination number, the larger
the magnetic moment per atom

» Thin films and clusters have large magnetocrystalline
anisotropy per atom (that's what you want for magnetic
recording)
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Clusters and magnetism: Problems . ..

» Magnetic properties of large assemblies of clusters are
macroscopic: no principal problems with measuring them
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Clusters and magnetism: Problems . ..
» Magnetic properties of large assemblies of clusters are
macroscopic: no principal problems with measuring them
» To understand nanomagnetism, one needs to study individual
small systems
» Magnetization of individual clusters (of just few atoms)

cannot be measured by macroscopic methods

» Recent progress in studying magnetism of clusters is, to a
large extent, associated with analyzing XMCD
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XMCD appeals

XMCD (X-ray Magnetic Circular Dichroism):
sample is magnetized, measure the difference between absorption

of left and right circularly polarized x-rays

photon helicity

parallel o
X-rays —_— magnetization
NANANANANANS
<‘_
antiparallel

» Chemically selective — one can probe “local” magnetism
connected with particular chemical type of atoms

» XMCD sum rules gives access to fispin and fion Separately
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Two ways of moving an electron

(A quick and dirty introduction to magnetism)

» Spinning: ?

» Orbiting: Q
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Two ways of moving an electron

(A quick and dirty introduction to magnetism)

» Spinning: ?
Hspin
usually large, ~2.2 upg for Fe I

» Orbiting:
Horb
usually small, ~0.1 upg for Fe
important for connection with MAE
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L, 3 edge of magnetic TM systems
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L, 3 edge of magnetic TM systems

o

XMCD sum rules:
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Problems with sum rules
Approximations involved in its derivation:
» Transition to a well-defined single band

» Core hole neglected

> ...
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Problems with sum rules
Approximations involved in its derivation:
» Transition to a well-defined single band

» Core hole neglected

> ..

» Could be at least partly corrected for by renormalization,
scaling and/or varying the L; 3 edge integration ranges

» Justified when studying series of related systems:
One can assume that the corrections will be similar for each
member of the series
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T, term: A feature, not a bug !

3 [ (ape, —28p,) dE = Foin T 7Tz
IA np
Ia integrated isotropic absorption spectrum
Hspin  d component of the local spin magnetic moment
np number of holes in the d band
T, d component of magnetic dipole operator
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3 [ (ape, —28p,) dE = Foin T 7Tz
IA np
Ia integrated isotropic absorption spectrum
Hspin  d component of the local spin magnetic moment
np number of holes in the d band
T, d component of magnetic dipole operator

T. = (%) = ($lo—3GF o)L,)
T, is a measure of the asphericity of spin magnetization
[Stohr & Konig PRL 75 3748; Oguchi & Shishidou PRB 70 024412]
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T, term: A feature, not a bug !

3 [ (ape, —28p,) dE = Foin T 7Tz
IA np
Ia integrated isotropic absorption spectrum
Hspin  d component of the local spin magnetic moment
np number of holes in the d band
T, d component of magnetic dipole operator

T. = (%) = ($lo—3GF o)L,)
T, is a measure of the asphericity of spin magnetization
[Stohr & Konig PRL 75 3748; Oguchi & Shishidou PRB 70 024412]

spin Can be obtained only in combination with 77, !
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Does T, term really matter ?

» For bulk systems it is usually negligible
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» For surfaces, monolayers or wires, absolute value of 77, is
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Does T, term really matter ?

>

>

For bulk systems it is usually negligible

For surfaces, monolayers or wires, absolute value of 77, is
about 20 % of figpin [Wu & Freeman PRL 73 1994 (1994);
Komelj et al. PRB 66 140407(R) (2002)]

For investigating trends of fispin Within a series of systems,
what matters is how T, varies from one system to another

» If variations in T, are small, neglect of T, causes just an
overall shift of the deduced jigpin

» Could T, vary in such a way that the overall trends
of pspin+7 T, and fispin would be quite different ?

Common experience: Variations in ny do not really matter,
their effect is more-or-less negligible
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Our mission

» Take a series of supported clusters of different sizes
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Our mission
» Take a series of supported clusters of different sizes

» For each cluster size, evaluate average of d components
of Hspin

1 & ()
534,
j=1

and of [,Ufspin + 7Tz]/nh

N G) 9)
i luspln +7 TZ
N2 0)
Jj=1 h
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Our mission

» Take a series of supported clusters of different sizes

» For each cluster size, evaluate average of d components

of Hspin
N
1 )
N Z Hepin
=1

and of [pspin + 7T,]/np

N G) 9)
i luspln +7 TZ
N Z 0)
Jj=1 h

» Compare how fispin and [pspin + 77T]/np depend on the

cluster size
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Systems (1)

Clusters: Fep, Copn Substrates: Ni(001), Au(111)

ee ... (O]9 ...
Q O)
... .... .: ® .....
000 )
o0 9%° o® .:.
Q@
CHC) )
000 o000
%° ®e® Clusters on Au(111)
N=1-7

Clusters on Ni(001)
N=1-9
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Systems (2)

Distances between cluster atoms and the substrate taken so that
structural relaxation is partially accounted for:

substrate bulk interlayer surface-to-cluster

distance distance
Ni(001) 1.76 A 1.85 A
Au(111) 235 A 1.78 A

(Obtained from comparing atomic volumes and from other
people’s calculations [Martinez et al. PRB 71 165425 (2002)])
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Distances between cluster atoms and the substrate taken so that
structural relaxation is partially accounted for:

substrate bulk interlayer surface-to-cluster

distance distance
Ni(001) 1.76 A 1.85 A
Au(111) 235 A 1.78 A

(Obtained from comparing atomic volumes and from other
people’s calculations [Martinez et al. PRB 71 165425 (2002)])

Magnetization M perpendicular to the surface
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Systems (2)

Distances between cluster atoms and the substrate taken so that
structural relaxation is partially accounted for:

substrate bulk interlayer surface-to-cluster

distance distance
Ni(001) 1.76 A 1.85 A
Au(111) 235 A 1.78 A

(Obtained from comparing atomic volumes and from other
people’s calculations [Martinez et al. PRB 71 165425 (2002)])

Magnetization M perpendicular to the surface

Complete monolayers N=oc included as well (as end-points of the

series. . .) 2
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Calculational procedure for supported clusters

» Ab-initio calculations, fully relativistic, LDA, SPR-KKR code
http://olymp.phys.chemie.uni-muenchen.de/ak/ebert/SPRKKR
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Calculational procedure for supported clusters

» Ab-initio calculations, fully relativistic, LDA, SPR-KKR code
http://olymp.phys.chemie.uni-muenchen.de/ak/ebert/SPRKKR

» Core hole neglected

» Calculate electronic structure of the “host” system (clean
surface)

» Tight-binding or screened KKR  [Zeller et al. PRB 52 8807]

» Supported clusters are treated as a perturbation to the clean
surface  [Minar et al. Appl. Physics A 82 139 (2006)]

» Green's function of the new system (cluster plus substrate) is
obtained by solving the Dyson equation

» Atomic sphere approximation (ASA), {pax=2

FZ0


http://olymp.phys.chemie.uni-muenchen.de/ak/ebert/SPRKKR

Results:  fispin and  [pspin + 7 T2/ nn
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Con/Au(111): T, changes the picture completely !
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Con/Au(111): T, changes the picture completely !
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Con/Au(111): T, changes the picture completely !
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Have a closer look: effect of Ef

)

eoman o] > fispin Can be obtained as an integral of
o spin polarization
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i (E) — ny(E) = Lopn®
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dE d

spin polarization [ug/eV]

Hspin ( Er ) = /
4 2 —0o0
energy from E¢ [eV]
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Have a closer look: effect of Ef

spin polarization [ug/eV]

spin integral  [ug]
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Have a closer look: effect of Ef
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Have a closer look: effect of Ef
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Have a closer look: effect of Ef

)

e > fispin Can be obtained as an integral of
spin polarization
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Have a closer look: effect of Ef
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Have a closer look: effect of Ef
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Have a closer look: effect of Ef
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T, as a function of Ef
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T, as a function of Ef
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T, as a function of Ef
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T, as a function of Ef
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T, as a function of Ef
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Sum rules can be checked
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> Calculate the spectra theoretically
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FZ0



Sum rules

can be checked

Ls

L, s-edge XANES

isotropic
absorption |

L, s-edge XMCD

difference 4
1.(+)- l,(-)

-4
-10 0

energy

10 20 30
[eV]

> Calculate the spectra theoretically
> Aply XMCD sum rules

» Compare fispin and fio1, derived
from XMCD spectra with moments
calculated directly

FZ0



Sum rules can be checked

B e A > Calculate the spectra theoretically
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Verifying spin sum rule: [fispin + 7 T;]/np via two ways

Fen/Ni(001)

Fe on Ni
CoN/Au(lll)

0.8 1

X‘X_
0.6 XX s X ¢-X B
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S ‘
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L « — directly
X --eee from spectra

o4l 11 )
1 3 5 7 9 o 1 3 5 7 o

no. of Fe atoms N no. of Coatoms N

> Good agreement between evaluating [fispin + 7 T]/np from
electronic structure and from XAS

» Spin sum rule itself is valid (at least within the initial state
approximation) >
FZ0



Can the results be trusted?

» Dealing not with isolated systems but with whole series of
clusters, spanning from single ad-atoms to complete
monolayers

» All the systems treated in the same manner
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Can the results be trusted?

» Dealing not with isolated systems but with whole series of
clusters, spanning from single ad-atoms to complete
monolayers

» All the systems treated in the same manner

» Conclusions are not crucially sensitive to the accuracy of the
calculations

» The fact that puspin and [pspin + 7 T2]/np may have opposite
trends has thus been established quite reliably
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Conclusions

» Knowing how T, varies with cluster size is essential for
applying XMCD spin sum rule in clusters
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Conclusions

» Knowing how T, varies with cluster size is essential for
applying XMCD spin sum rule in clusters

» Magnetic dipole term T is not just a minor factor that
affects the analysis

» Whether the size-dependence of fispin and of [pspin + 77T;]/np
will be opposite or not depends both on the clusters and on
the substrate

» At least when analyzing XMCD spectra of Co on noble metal
surfaces (Pt, Au), the influence of T, definitely should be
taken into account
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Take-home message

Magnetic dipole term T, is a bad guy. ..
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