Intuitive view on the magnetic dipole term Tz occurring in the XMCD sum rules

Case study of a failed intuition

O. Šipr¹ J. Vackář¹ H. Ebert² J. Minár^{2,3}

¹Institute of Physics ASCR, Praha http://www.fzu.cz/~sipr
²Department Chemie, Ludwig-Maximilians-Universität, München
³New Technologies Research Centre, University of West Bohemia, Plzeň

Karlsruhe, XAFS16, 27. August 2015

$L_{2,3}$ edge of magnetic systems (transition metals)

2

Outline

- Why to care about the magnetic dipole T_z term
- What to look for, what to expect: Focus on the spin-orbit coupling (SOC).
- Results: When things works as expected and when they do not

Practical lessons?

 $\mu_{
m spin}$ comes only in combination with 7 T_z

Spin magnetic moment XMCD sum rule for the $L_{2,3}$ edge:

$$\frac{\mu_{\rm spin} + 7T_z}{n_h} = \frac{3}{I_A} \int \left(\Delta \mu_{L_3} - 2\Delta \mu_{L_2}\right) \, \mathrm{d}E$$

Exact relation for T_z : $T_z = \langle \hat{T}_z \rangle = \langle \frac{1}{2} [\sigma - 3\hat{\mathbf{r}} (\hat{\mathbf{r}} \cdot \sigma)]_z \rangle$

Magnetic dipole term depends on the orientation of the magnetization **M** (therefore " T_{α} " from now on):

If magnetic field \mathbf{M} is oriented along the x axis or the y axis:

$$T_{x} = \left\langle \hat{T}_{x} \right\rangle = \left\langle \frac{1}{2} \left[\sigma - 3\hat{\mathbf{r}} (\hat{\mathbf{r}} \cdot \sigma) \right]_{x} \right\rangle$$
$$T_{y} = \left\langle \hat{T}_{y} \right\rangle = \left\langle \frac{1}{2} \left[\sigma - 3\hat{\mathbf{r}} (\hat{\mathbf{r}} \cdot \sigma) \right]_{y} \right\rangle$$

What to think about T_{α} ?

- Its existence and importance is universally acknowledged but it is not clear how to "visualize" it.
- Often quoted statement: T_α is a measure of the intra-atomic spin asphericity (see below on what this really means).
- For bulk systems T_{α} is usually negligible.
- For surfaces, monolayers or wires, absolute value of $7T_{\alpha}$ is about 20 % of μ_{spin} .

 \Rightarrow T_{α} matters for low-dimensional systems.

 \mathcal{T}_{lpha} changes apparent dependence of $\mu_{
m spin}$ on cluster size

Illustration:

Ab-initio calculation for Co_N clusters of 1–7 atoms supported by Au(111)

The T_z term changes the picture completely:

While the "true" $\mu_{\rm spin}$ decreases with the cluster size, the "apparent XMCD-derived" $\mu_{\rm spin}$ determined by $\mu_{\rm spin} + 7T_z$ increases with the cluster size.

O. Šipr et al. EPL 87, 67007 (2009)

・ロト ・四ト ・ヨト ・ヨト

\mathcal{T}_{lpha} makes $\mu_{ m spin}$ to falsely appear to be anisotropic

Co ad-atom and Co monolayer on Pd(111) surface, varying the direction of the magnetization **M**.

ad-atom		$\mu_{\rm spin} \left[\mu_B \right]$	$\mu_{\rm spin} + 7 T_{\alpha} \ [\mu_B]$
••••	M ∥ <i>xy</i>	2.47	2.65
	$\mathbf{M} \ z$	2.47	2.11
monolayer		$\mu_{\rm spin} \ [\mu_B]$	$\mu_{\rm spin} + 7 T_{\alpha} \ [\mu_B]$
00000	M ∥ <i>xy</i>	2.02	2.26
00000	M ∥ <i>z</i>	2.02	1.56

O. Šipr *et al.* PRB **88**, 064411 (2013)

Intuition can be obtained via approximations

Start with exact equation: $T_{\alpha} = -\frac{\mu_B}{\hbar} \left\langle \sum_{\beta} Q_{\alpha\beta} S_{\beta} \right\rangle$,

 $Q_{lphaeta}~=~\delta_{lphaeta}~-~3r^0_lpha r^0_eta$ is the quadrupole moment, S_lpha is the spin.

If the spin-orbit coupling (SOC) is neglected, one gets

$$T_{\alpha} = \frac{1}{2} (-\mu_B) \sum_{mm'} \left[N^{\uparrow}_{mm'} - N^{\downarrow}_{mm'} \right] \langle Y_{2m} | \hat{Q}_{\alpha\alpha} | Y_{2m'} \rangle ,$$

where $N_{mm'}^{(s)}$ is a spin-dependent "number of states" matrix.

[Stöhr & König PRL 75, 3748 (1995), Stöhr JMMM 200, 470 (1999)]

Linking \mathcal{T}_{lpha} to *m*-resolved components of $\mu_{ m spin}$

Neglecting components not diagonal in m, one gets

$$\mathcal{T}_{lpha} \;=\; \sum_{m} \; rac{1}{2} \left< Y_{2m} | \hat{Q}_{lpha lpha} | Y_{2m}
ight> \mu_{\mathsf{spin}}^{(m)} \; \, ,$$

where $\mu_{\text{spin}}^{(m)}$ are *m*-resolved components of μ_{spin} .

Non-zero	$\langle Y_{2m}$	$ \hat{Q}_{\alpha\alpha} $	$ Y_{2m}\rangle$	components:
	\ 2	- uuu	2/	

	Q_{xx}	Q_{yy}	Q _{zz}
$\langle Y_{xy} \hat{Q}_{lphalpha} Y_{xy} angle$	$-\frac{2}{7}$	$-\frac{2}{7}$	$\frac{4}{7}$
$\langle Y_{yz} \hat{Q}_{lpha lpha} Y_{yz} angle$	$\frac{4}{7}$	$-\frac{2}{7}$	$-\frac{2}{7}$
$\langle Y_{3z^2-r^2} \hat{Q}_{\alpha\alpha} Y_{3z^2-r^2}\rangle$	$\frac{2}{7}$	$\frac{2}{7}$	$-\frac{4}{7}$
$\langle Y_{xz} \hat{Q}_{\alpha\alpha} Y_{xz} \rangle$	$-\frac{2}{7}$	$\frac{4}{7}$	$-\frac{2}{7}$
$\langle Y_{x^2-y^2} \hat{Q}_{lphalpha} Y_{x^2-y^2} angle$	$-\frac{2}{7}$	$-\frac{2}{7}$	$\frac{4}{7}$
$\langle Y_{x^2-y^2} \hat{Q}_{lphalpha} Y_{3z^2-r^2} angle$	$\frac{2\sqrt{3}}{7}$	$-\frac{2\sqrt{3}}{7}$	0

[Stöhr & König PRL **75**, 3748 (1995), Crocombette *et al.* JPCM **8**, 4095 (1995), Stöhr JMMM **200**, 470 (1999), Šipr *et al.* PRB **88**, 064411 (2013)]

How to view the elusive T_{α} term

If the spin-orbit coupling (SOC) can be neglected:

 ${\cal T}_{\alpha}$ term arises due to differences in ${\it m}\mbox{-resolved components}$ of $\mu_{\rm spin}.$

In this respect one can indeed say that T_{α} is a measure of deviations of $\mu_{\rm spin}$ from spherical symmetry.

Technical view:

Magnetic dipole term T_{α} for magnetization parallel to the α axis is generated via a competition between those *m*-components of $\mu_{\rm spin}$ which contain the α coordinate and those which do not.

Quest for a T_{α} -free XMCD measurement

It makes sense to ask whether the SOC can be neglected in T_{α} .

- If the SOC is neglected, average of T_{α} is zero, $T_x + T_y + T_z = 0.$
- If the SOC is neglected, the dependence of T_α on the magnetization direction goes as T(θ) ~ 3 cos² θ − 1, so T_α vanishes at the magic angle θ = 54°.

[König & Stöhr PRL 75, 3748 (1995), Stöhr JMMM 200, 470 (1999)]

Can the effect of SOC on T_{α} be neglected?

A tell-tale sign that the SOC cannot be neglected is breakdown of the $T_x + T_y + T_z = 0$ equation.

- Many-body effects beyond the LDA violate the T_x + T_y + T_z = 0 condition for low-dimensional systems such as free-standing 3d wires. [Ederer *et al.* JESRP 130, 97 (2003)]
- Experimental evidence that SOC matters: deviations from the T_x + T_y + T_z = 0 rule observed for magnetite nanoparticles in the monoclinic low-temperature phase.

[Schmitz et al. Sci. Rep. 4, 5760 (2014)]

Our mission

Verify validity of following relations:

- 1. $T_{\alpha} = \sum_{m} \frac{1}{2} \langle Y_{2m} | \hat{Q}_{\alpha\alpha} | Y_{2m} \rangle \mu_{\text{spin}}^{(m)}$
- $2. T_x + T_y + T_z = 0$
- Make a systematic study over a range of systems.
- Monitor the validity of the relations above if we go from small-SOC materials to large-SOC materials.
 - For supported magnetic nanostructures, the SOC of the substrate may be more important than SOC of the nanostructure itself.
- Fully-relativistic ab-initio calculations as implemented in the KKR-Green's function SPRKKR code [Ebert *et al.* Rep. Prog. Phys. 2011].
 - Rely on LDA (no orbital polarization).

Results: Co monolayers on noble metals (1)

	Co/C	u(111)	Co/A	g(111)	Co/A	u(111)
	exact	approx	exact	approx	exact	approx
$\mu_{ m spin}$	1.710		1.961		1.976	
T_{x}	0.020	0.021	0.025	0.024	0.032	0.032
T_y	0.020	0.021	0.025	0.024	0.032	0.032
T_z	-0.037	-0.042	-0.043	-0.048	-0.061	-0.064
$\frac{\sum_{\alpha} 7T_{\alpha}}{\mu_{\rm spin}}$	0.011		0.021		0.009	

exact:
$$T_{\alpha} = -\frac{\mu_B}{\hbar} \left\langle \sum_{\beta} Q_{\alpha\beta} S_{\beta} \right\rangle$$

approximative: $T_{\alpha} = \sum_{m} \frac{1}{2} \left\langle Y_{2m} | \hat{Q}_{\alpha\alpha} | Y_{2m} \right\rangle \mu_{spin}^{(m)}$

Results: Co monolayers on noble metals (2)

	Co/Po	Co/Pd(111)		Co/Pt(111)		
	exact	approx	exact	approx		
$\mu_{ m spin}$	2.018		2.004			
T_{x}	0.028	0.027	0.028	0.027		
T_y	0.028	0.027	0.028	0.027		
T_z	-0.051	-0.054	-0.053	-0.054		
$\frac{\sum_{\alpha} 7T_{\alpha}}{\mu_{\rm spin}}$	0.015		0.008			

exact:
$$T_{\alpha} = -\frac{\mu_B}{\hbar} \left\langle \sum_{\beta} Q_{\alpha\beta} S_{\beta} \right\rangle$$

approximative: $T_{\alpha} = \sum_{m} \frac{1}{2} \left\langle Y_{2m} | \hat{Q}_{\alpha\alpha} | Y_{2m} \right\rangle \mu_{spin}^{(m)}$

Results: Co ad-atoms on noble metals (1)

	Co/C	u(111)	Co/A	g(111)	Co/A	u(111)
	exact	approx	exact	approx	exact	approx
$\mu_{ m spin}$	2.086		2.164		2.257	
T_{x}	0.057	0.031	0.059	0.008	0.080	0.040
T_y	0.057	0.031	0.059	0.008	0.080	0.040
T_z	-0.052	-0.061	-0.004	-0.016	-0.068	-0.080
$\frac{\sum_{\alpha} 7T_{\alpha}}{\mu_{\rm spin}}$	0.206		0.372		0.284	

exact:
$$T_{\alpha} = -\frac{\mu_B}{\hbar} \left\langle \sum_{\beta} Q_{\alpha\beta} S_{\beta} \right\rangle$$

approximative: $T_{\alpha} = \sum_{m} \frac{1}{2} \left\langle Y_{2m} | \hat{Q}_{\alpha\alpha} | Y_{2m} \right\rangle \mu_{spin}^{(m)}$

Results: Co ad-atoms on noble metals (2)

	Co/Po	Co/Pd(111)		t(111)
	exact	approx	exact	approx
$\mu_{ m spin}$	2.290		2.331	
T_{x}	0.098	0.093	0.109	0.098
T_y	0.098	0.093	0.109	0.098
T_z	-0.173	-0.186	-0.185	-0.196
$\frac{\sum_{\alpha} 7T_{\alpha}}{\mu_{\rm spin}}$	0.072		0.098	

exact:
$$T_{\alpha} = -\frac{\mu_B}{\hbar} \left\langle \sum_{\beta} Q_{\alpha\beta} S_{\beta} \right\rangle$$

approximative: $T_{\alpha} = \sum_{m} \frac{1}{2} \left\langle Y_{2m} | \hat{Q}_{\alpha\alpha} | Y_{2m} \right\rangle \mu_{\text{spin}}^{(m)}$

Results: $T_x + T_y + T_z = 0$ criterion "all-on-one"

Compare the $\frac{\sum_{\alpha} 7 T_{\alpha}}{\mu_{\rm spin}}$ quantity for different systems:

	monolayer	ad-atom	
Co/Cu(111)	0.011	0.206	SOC is <i>nominally</i> small!
Co/Pd(111)	0.015	0.072	
Co/Ag(111)	0.021	0.372	
Co/Pt(111)	0.008	0.098	
Co/Au(111)	0.009	0.284	

Dimensionality seems to be more important than SOC of the substrate.

SOC strength ξ is to be compared to crystal field splitting Δ_{CF} .

Results: Effect of dimensionality

Monitor how $\frac{\sum_{\alpha} 7T_{\alpha}}{\mu_{spin}}$ varies for Co systems of difference sizes supported by Au(111).

Summary:

Effect of SOC on T_{α} can be neglected for two-dimensional systems but it cannot be neglected for clusters.

Does it matter that SOC cannot be neglected?

For a class of materials where employing XMCD is especially conveniently, approximative relations for T_{α} and the whole the intuitive concept of "asphericity of spin density" cannot be used.

However, intuition might be in troubles also for other reasons:

 T_z of low-dimensional systems crucially depends in the position of the Fermi level E_F , meaning that its value will be difficult to guess anyway. [Komelj *et al.* PRB **66**, 140407 (2002), Ederer *et al.* JESRP **130**, 97 (2003),

Šipr et al. EPL 87, 67007 (2009)].

So we have just another reason why intuitive thinking about T_z term would fail.

Conclusions

For small supported systems such as ad-atoms and clusters, the intuitively plausible relation

$$T_{lpha} = \sum_{m} rac{1}{2} \langle Y_{2m} | \hat{Q}_{lpha lpha} | Y_{2m}
angle \, \mu_{ ext{spin}}^{(m)}$$

cannot be used (not even for purely 3d systems).

- ► Likewise, T_z -free XMCD measurement by means of exploiting the magic angle $\theta = 54^{\circ}$ cannot be employed for such systems.
- ▶ Is intuition doomed to fail for T_{α} term in nanostructures?

Conclusions

For small supported systems such as ad-atoms and clusters, the intuitively plausible relation

$$T_{lpha} = \sum_{m} rac{1}{2} \langle Y_{2m} | \hat{Q}_{lpha lpha} | Y_{2m}
angle \, \mu_{ ext{spin}}^{(m)}$$

cannot be used (not even for purely 3d systems).

- Likewise, T_z -free XMCD measurement by means of exploiting the magic angle $\theta = 54^{\circ}$ cannot be employed for such systems.
- Is intuition doomed to fail for T_{α} term in nanostructures?

Thank you!

