Intuitive view on the magnetic dipole term Tz occurring in the XMCD sum rules

Case study of a failed intuition

O. Šipr ${ }^{1} \quad$ J. Vackář ${ }^{1}$ H. Ebert ${ }^{2} \quad$ J. Minár ${ }^{2,3}$
${ }^{1}$ Institute of Physics ASCR, Praha http://www.fzu.cz/~sipr
${ }^{2}$ Department Chemie, Ludwig-Maximilians-Universität, München
${ }^{3}$ New Technologies Research Centre, University of West Bohemia, Plzeň

$L_{2,3}$ edge of magnetic systems (transition metals)

$$
\int\left(\Delta \mu_{L_{3}}-2 \Delta \mu_{L_{2}}\right) d E \sim \frac{\mu_{\mathrm{spin}}^{(d)}+7 T_{z}^{(d)}}{3 n_{h}^{(d)}}
$$

$$
\int\left(\Delta \mu_{L_{3}}+\Delta \mu_{L_{2}}\right) d E \sim \frac{\mu_{\mathrm{orb}}^{(d)}}{2 n_{h}^{(d)}}
$$

Outline

- Why to care about the magnetic dipole T_{z} term
- What to look for, what to expect: Focus on the spin-orbit coupling (SOC).
- Results: When things works as expected and when they do not
- Practical lessons?

$\mu_{\text {spin }}$ comes only in combination with $7 T_{z}$

Spin magnetic moment XMCD sum rule for the $L_{2,3}$ edge:

$$
\frac{\mu_{\text {spin }}+7 T_{z}}{n_{h}}=\frac{3}{I_{A}} \int\left(\Delta \mu_{L_{3}}-2 \Delta \mu_{L_{2}}\right) \mathrm{d} E
$$

Exact relation for $T_{z}: \quad T_{z}=\left\langle\hat{T}_{z}\right\rangle=\left\langle\frac{1}{2}[\sigma-3 \hat{\mathbf{r}}(\hat{\mathbf{r}} \cdot \sigma)]_{z}\right\rangle$

Magnetic dipole term depends on the orientation of the magnetization \mathbf{M} (therefore " T_{α} " from now on):

If magnetic field \mathbf{M} is oriented along the x axis or the y axis:

$$
\begin{aligned}
& T_{x}=\left\langle\hat{T}_{x}\right\rangle=\left\langle\frac{1}{2}[\sigma-3 \hat{\mathbf{r}}(\hat{\mathbf{r}} \cdot \sigma)]_{x}\right\rangle \\
& T_{y}=\left\langle\hat{T}_{y}\right\rangle=\left\langle\frac{1}{2}[\sigma-3 \hat{\mathbf{r}}(\hat{\mathbf{r}} \cdot \sigma)]_{y}\right\rangle
\end{aligned}
$$

What to think about T_{α} ?

- Its existence and importance is universally acknowledged but it is not clear how to "visualize" it.
- Often quoted statement: T_{α} is a measure of the intra-atomic spin asphericity (see below on what this really means).
- For bulk systems T_{α} is usually negligible.
- For surfaces, monolayers or wires, absolute value of $7 T_{\alpha}$ is about 20% of $\mu_{\text {spin }}$. $\Rightarrow T_{\alpha}$ matters for low-dimensional systems.
T_{α} changes apparent dependence of $\mu_{\text {spin }}$ on cluster size
$\diamond==-=$ no T_{z}
- with T_{z}

Illustration:
Ab -initio calculation for Co_{N} clusters of $1-7$ atoms supported by $\mathrm{Au}(111)$

The T_{z} term changes the picture completely:

While the "true" $\mu_{\text {spin }}$ decreases with the cluster size, the "apparent XMCD-derived" $\mu_{\text {spin }}$ determined by $\mu_{\text {spin }}+7 T_{z}$ increases with the cluster size.
O. Šipr et al. EPL 87, 67007 (2009)
T_{α} makes $\mu_{\text {spin }}$ to falsely appear to be anisotropic
Co ad-atom and Co monolayer on $\operatorname{Pd}(111)$ surface, varying the direction of the magnetization \mathbf{M}.
ad-atom

	$\mu_{\text {spin }}\left[\mu_{B}\right]$	$\mu_{\text {spin }}+7 T_{\alpha}\left[\mu_{B}\right]$	
$\mathbf{M} \\| x y$	2.47	2.65	
$\mathbf{M} \\| z$	2.47	2.11	

monolayer

	$\mu_{\text {spin }}\left[\mu_{B}\right]$	$\mu_{\text {spin }}+7 T_{\alpha}\left[\mu_{B}\right]$	
$\mathbf{M} \\| x y$	2.02	2.26	
$\mathbf{M} \\| z$	2.02	1.56	

O. Šipr et al. PRB 88, 064411 (2013)

Intuition can be obtained via approximations

Start with exact equation: $\quad T_{\alpha}=-\frac{\mu_{B}}{\hbar}\left\langle\sum_{\beta} Q_{\alpha \beta} S_{\beta}\right\rangle$,
$Q_{\alpha \beta}=\delta_{\alpha \beta}-3 r_{\alpha}^{0} r_{\beta}^{0}$ is the quadrupole moment, S_{α} is the spin.

If the spin-orbit coupling (SOC) is neglected, one gets

$$
T_{\alpha}=\frac{1}{2}\left(-\mu_{B}\right) \sum_{m m^{\prime}}\left[N_{m m^{\prime}}^{\uparrow}-N_{m m^{\prime}}^{\downarrow}\right]\left\langle Y_{2 m}\right| \hat{Q}_{\alpha \alpha}\left|Y_{2 m^{\prime}}\right\rangle
$$

where $N_{m m^{\prime}}^{(s)}$ is a spin-dependent "number of states" matrix.
[Stöhr \& König PRL 75, 3748 (1995), Stöhr JMMM 200, 470 (1999)]

Linking T_{α} to m-resolved components of $\mu_{\text {spin }}$

Neglecting components not diagonal in m, one gets

$$
T_{\alpha}=\sum_{m} \frac{1}{2}\left\langle Y_{2 m}\right| \hat{Q}_{\alpha \alpha}\left|Y_{2 m}\right\rangle \mu_{\mathrm{spin}}^{(m)},
$$

where $\mu_{\text {spin }}^{(m)}$ are m-resolved components of $\mu_{\text {spin }}$.
Non-zero $\left\langle Y_{2 m}\right| \hat{Q}_{\alpha \alpha}\left|Y_{2 m}\right\rangle$ components:

	$Q_{x x}$	$Q_{y y}$	$Q_{z z}$
$\left\langle Y_{x y}\right\| \hat{Q}_{\alpha \alpha}\left\|Y_{x y}\right\rangle$	$-\frac{2}{7}$	$-\frac{2}{7}$	$\frac{4}{7}$
$\left\langle Y_{y z}\right\| \hat{Q}_{\alpha \alpha}\left\|Y_{y z}\right\rangle$	$\frac{4}{7}$	$-\frac{2}{7}$	$-\frac{2}{7}$
$\left\langle Y_{3 z^{2}-r^{2}}\right\| \hat{Q}_{\alpha \alpha}\left\|Y_{3 z^{2}-r^{2}}\right\rangle$	$\frac{2}{7}$	$\frac{2}{7}$	$-\frac{4}{7}$
$\left\langle Y_{x z}\right\| \hat{Q}_{\alpha \alpha}\left\|Y_{x z}\right\rangle$	$-\frac{2}{7}$	$\frac{4}{7}$	$-\frac{2}{7}$
$\left\langle Y_{x^{2}-y^{2}}\right\| \hat{Q}_{\alpha \alpha}\left\|Y_{x^{2}-y^{2}}\right\rangle$	$-\frac{2}{7}$	$-\frac{2}{7}$	$\frac{4}{7}$
$\left\langle Y_{x^{2}-y^{2}}\right\| \hat{Q}_{\alpha \alpha}\left\|Y_{3 z^{2}-r^{2}}\right\rangle$	$\frac{2 \sqrt{3}}{7}$	$-\frac{2 \sqrt{3}}{7}$	0

[Stöhr \& König PRL 75, 3748 (1995), Crocombette et al. JPCM 8, 4095 (1995), Stöhr JMMM 200, 470 (1999),

How to view the elusive T_{α} term

If the spin-orbit coupling (SOC) can be neglected:
T_{α} term arises due to differences in m-resolved components of $\mu_{\text {spin }}$.
In this respect one can indeed say that T_{α} is a measure of deviations of $\mu_{\text {spin }}$ from spherical symmetry.

Technical view:
Magnetic dipole term T_{α} for magnetization parallel to the α axis is generated via a competition between those m-components of $\mu_{\text {spin }}$ which contain the α coordinate and those which do not.

Quest for a T_{α}－free XMCD measurement

It makes sense to ask whether the SOC can be neglected in T_{α} ．
－If the SOC is neglected，average of T_{α} is zero， $T_{x}+T_{y}+T_{z}=0$.
－If the SOC is neglected，the dependence of T_{α} on the magnetization direction goes as $T(\theta) \sim 3 \cos ^{2} \theta-1$ ，so T_{α} vanishes at the magic angle $\theta=54^{\circ}$ ．
［König \＆Stöhr PRL 75， 3748 （1995），Stöhr JMMM 200， 470 （1999）］

Can the effect of SOC on T_{α} be neglected?

A tell-tale sign that the SOC cannot be neglected is breakdown of the $T_{x}+T_{y}+T_{z}=0$ equation.

- Many-body effects beyond the LDA violate the $T_{x}+T_{y}+T_{z}=0$ condition for low-dimensional systems such as free-standing $3 d$ wires.
[Ederer et al. JESRP 130, 97 (2003)]
- Experimental evidence that SOC matters: deviations from the $T_{x}+T_{y}+T_{z}=0$ rule observed for magnetite nanoparticles in the monoclinic low-temperature phase. [Schmitz et al. Sci. Rep. 4, 5760 (2014)]

Our mission

Verify validity of following relations:

1. $T_{\alpha}=\sum_{m} \frac{1}{2}\left\langle Y_{2 m}\right| \hat{Q}_{\alpha \alpha}\left|Y_{2 m}\right\rangle \mu_{\mathrm{spin}}^{(m)}$
2. $T_{x}+T_{y}+T_{z}=0$

- Make a systematic study over a range of systems.
- Monitor the validity of the relations above if we go from small-SOC materials to large-SOC materials.
- For supported magnetic nanostructures, the SOC of the substrate may be more important than SOC of the nanostructure itself.
- Fully-relativistic ab-initio calculations as implemented in the KKR-Green's function SPRKKR code [Ebert et al. Rep. Prog. Phys. 2011].
- Rely on LDA (no orbital polarization).

Results: Co monolayers on noble metals (1)

	$\mathrm{Co} / \mathrm{Cu}(111)$		$\mathrm{Co} / \mathrm{Ag}(111)$		$\mathrm{Co} / \mathrm{Au}(111)$	
	exact	approx	exact	approx	exact	approx
$\mu_{\text {spin }}$	1.710		1.961		1.976	
T_{x}	0.020	0.021	0.025	0.024	0.032	0.032
T_{y}	0.020	0.021	0.025	0.024	0.032	0.032
T_{z}	-0.037	-0.042	-0.043	-0.048	-0.061	-0.064
$\frac{\sum_{\alpha} 7 T_{\alpha}}{\mu_{\text {spin }}}$	0.011		0.021		0.009	

$$
\begin{array}{ll}
\text { exact: } & T_{\alpha}=-\frac{\mu_{B}}{\hbar}\left\langle\sum_{\beta} Q_{\alpha \beta} S_{\beta}\right\rangle \\
\text { approximative: } & T_{\alpha}=\sum_{m} \frac{1}{2}\left\langle Y_{2 m}\right| \hat{Q}_{\alpha \alpha}\left|Y_{2 m}\right\rangle \mu_{\mathrm{spin}}^{(m)}
\end{array}
$$

Results: Co monolayers on noble metals (2)

	$\mathrm{Co} / \mathrm{Pd}(111)$		$\mathrm{Co} / \mathrm{Pt}(111)$	
	exact	approx	exact	approx
$\mu_{\text {spin }}$	2.018		2.004	
T_{x}	0.028	0.027	0.028	0.027
T_{y}	0.028	0.027	0.028	0.027
T_{z}	-0.051	-0.054	-0.053	-0.054
$\frac{\sum_{\alpha} 7 T_{\alpha}}{\mu_{\text {spin }}}$	0.015		0.008	

$\begin{array}{ll}\text { exact: } & T_{\alpha}=-\frac{\mu_{B}}{\hbar}\left\langle\sum_{\beta} Q_{\alpha \beta} S_{\beta}\right\rangle \\ \text { approximative: } & T_{\alpha}=\sum_{m} \frac{1}{2}\left\langle Y_{2 m}\right| \hat{Q}_{\alpha \alpha}\left|Y_{2 m}\right\rangle \mu_{\text {spin }}^{(m)}\end{array}$

Results: Co ad-atoms on noble metals (1)

	$\mathrm{Co} / \mathrm{Cu}(111)$		$\mathrm{Co} / \mathrm{Ag}(111)$		$\mathrm{Co} / \mathrm{Au}(111)$	
	exact	approx	exact	approx	exact	approx
$\mu_{\text {spin }}$	2.086		2.164		2.257	
T_{x}	0.057	0.031	0.059	0.008	0.080	0.040
T_{y}	0.057	0.031	0.059	0.008	0.080	0.040
T_{z}	-0.052	-0.061	-0.004	-0.016	-0.068	-0.080
$\frac{\sum_{\alpha} 7 T_{\alpha}}{\mu_{\text {spin }}}$	0.206		0.372		0.284	

$$
\begin{array}{ll}
\text { exact: } & T_{\alpha}=-\frac{\mu_{B}}{\hbar}\left\langle\sum_{\beta} Q_{\alpha \beta} S_{\beta}\right\rangle \\
\text { approximative: } & T_{\alpha}=\sum_{m} \frac{1}{2}\left\langle Y_{2 m}\right| \hat{Q}_{\alpha \alpha}\left|Y_{2 m}\right\rangle \mu_{\mathrm{spin}}^{(m)}
\end{array}
$$

Results: Co ad-atoms on noble metals (2)

	$\mathrm{Co} / \mathrm{Pd}(111)$		$\mathrm{Co} / \mathrm{Pt}(111)$	
	exact	approx	exact	approx
$\mu_{\text {spin }}$	2.290		2.331	
T_{x}	0.098	0.093	0.109	0.098
T_{y}	0.098	0.093	0.109	0.098
T_{z}	-0.173	-0.186	-0.185	-0.196
$\frac{\sum_{\alpha} 7 T_{\alpha}}{\mu_{\text {spin }}}$	0.072		0.098	

$\begin{array}{ll}\text { exact: } & T_{\alpha}=-\frac{\mu_{B}}{\hbar}\left\langle\sum_{\beta} Q_{\alpha \beta} S_{\beta}\right\rangle \\ \text { approximative: } & T_{\alpha}=\sum_{m} \frac{1}{2}\left\langle Y_{2 m}\right| \hat{Q}_{\alpha \alpha}\left|Y_{2 m}\right\rangle \mu_{\text {spin }}^{(m)}\end{array}$

Results: $T_{x}+T_{y}+T_{z}=0$ criterion "all-on-one"

Compare the $\frac{\sum_{\alpha} 7 T_{\alpha}}{\mu_{\text {spin }}}$ quantity for different systems:

	monolayer	ad-atom
$\mathrm{Co} / \mathrm{Cu}(111)$	0.011	0.206
$\mathrm{Co} / \mathrm{Pd}(111)$	0.015	0.072
$\mathrm{Co} / \mathrm{Ag}(111)$	0.021	0.372
$\mathrm{Co} / \mathrm{Pt}(111)$	0.008	0.098
$\mathrm{Co} / \mathrm{Au}(111)$	0.009	0.284

SOC is nominally small!

Dimensionality seems to be more important than SOC of the substrate.

SOC strength ξ is to be compared to crystal field splitting $\Delta_{C F}$.

Results: Effect of dimensionality

Monitor how $\frac{\sum_{\alpha} 7 T_{\alpha}}{\mu_{\text {spin }}}$ varies for Co systems of difference sizes supported by $\mathrm{Au}(111)$.

	$\frac{\sum_{\alpha} 7 T_{\alpha}}{\mu_{\text {spin }}}$	
Co adatom	0.284	
Co wire	0.058	
Co biwire	$0.020 / 0.009$	(two inequivalent Co atoms)
Co monolayer	0.009	

Summary:
Effect of SOC on T_{α} can be neglected for two-dimensional systems but it cannot be neglected for clusters.

Does it matter that SOC cannot be neglected?

For a class of materials where employing XMCD is especially conveniently, approximative relations for T_{α} and the whole the intuitive concept of "asphericity of spin density" cannot be used.

However, intuition might be in troubles also for other reasons:
T_{z} of low-dimensional systems crucially depends in the position of the Fermi level E_{F}, meaning that its value will be difficult to guess anyway.
[Komelj et al. PRB 66, 140407 (2002), Ederer et al. JESRP 130, 97 (2003),
Šipr et al. EPL 87, 67007 (2009)].
So we have just another reason why intuitive thinking about T_{z} term would fail.

Conclusions

- For small supported systems such as ad-atoms and clusters, the intuitively plausible relation

$$
T_{\alpha}=\sum_{m} \frac{1}{2}\left\langle Y_{2 m}\right| \hat{Q}_{\alpha \alpha}\left|Y_{2 m}\right\rangle \mu_{\mathrm{spin}}^{(m)}
$$

cannot be used (not even for purely $3 d$ systems).

- Likewise, T_{z}-free XMCD measurement by means of exploiting the magic angle $\theta=54^{\circ}$ cannot be employed for such systems.
- Is intuition doomed to fail for T_{α} term in nanostructures?

Conclusions

－For small supported systems such as ad－atoms and clusters， the intuitively plausible relation

$$
T_{\alpha}=\sum_{m} \frac{1}{2}\left\langle Y_{2 m}\right| \hat{Q}_{\alpha \alpha}\left|Y_{2 m}\right\rangle \mu_{\mathrm{spin}}^{(m)}
$$

cannot be used（not even for purely $3 d$ systems）．
－Likewise，T_{z}－free XMCD measurement by means of exploiting the magic angle $\theta=54^{\circ}$ cannot be employed for such systems．
－Is intuition doomed to fail for T_{α} term in nanostructures？

Thank you！

