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Electron energy levels in atom (1)

ΔE = hν
+Ze

n = 1

n = 2

n = 3

atom is spherically

symmetric

1s 2s 2px 2py 2pz

https://commons.wikimedia.org

Electron energy levels Enℓ.

Wave functions ψnℓms .

Quantum numbers:

principal n 1, 2, 3, . . .
orbital ℓ 0, 1, 2, . . .
magnetic m -ℓ, . . . ,−1, 0, 1, . . . , ℓ

spin s ±1
2

Spin operates in another Hilbert space: decoupling of s from n, ℓ and m.
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Intermezzo: Why care about quantum numbers? (1)

Classical mechanics: state of a system determined by positions and
velocities of constituting particles.

Quantum mechanics: state of a system represented by a vector in
a Hilbert space.

Physical quantities (“observables”) are represented by operators.

Possible outcomes of measuring an observable are the eigenvalues
of the respective operator.

A pure quantum state can be characterized by this eigenvalue.

Position and momentum (“velocity”) are observables. Knowing the position or
momentum of an electron is equivalent to knowing the eigenvalue of the
position operator or of the momentum operator.
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Why care about quantum numbers? (2)

Some operators do not commute. The system cannot be in a state
where the respective observables are well-defined: such a state
would have to be an eigenvector of both operators which is not
possible for non-commuting operators.

Recall the Heisenberg uncertainty principle.

To characterize the system, we should find which operators
commute.

The most definite information can be obtained about states which
are eigenvectors of all these operators simultaneously.

This information comprises the eigenvalues of these operators.

Stationary states, i.e., states which do not evolve in time, are
eigenvectors of the Hamiltonian.
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Electron energy levels in atom (2)

ΔE = hν
+Ze

n = 1

n = 2

n = 3

Electron in a spherically symmetric potential.

Commuting operators:

energy Ĥ E

size of the angular momentum L̂
2

ℓ(ℓ+ 1)

z-component of the ang. mom. L̂z m

spin Ŝ s

Eigenvectors of operators Ĥ , L̂
2
, L̂z , and Ŝ form

a complete set of solutions of the Schrödinger
equation for an atom.

Spin operator works in a Hilbert space that is

decoupled from the space where Ĥ, L̂
2
, and L̂z

operators works (in the non-relativistic case).
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Solids: Quantum states for a periodic potential

The potential V (r) has the periodicity of the crystal:

V (r+ R) = V (r) .

Looking for a solution of a Schrödinger equation for an electron in
a periodic potential:

Ĥ ψi(r) =

[

~
2

2m
∇2 + V (r)

]

ψi (r) = εi ψi(r) .

Solutions ψi (r) need not have translational periodicity!

Solutions of Schrödinger equation in a spherically symmetric potential

ψi (r) = RnℓYℓm (̂r) are not spherically symmetric either.

8/62



Finding the right quantum numbers
◮ How to find a complete set of solutions ψi (r) ?

|ψ〉 =
∑

i

|ψi 〉

〈r|ψ〉 =
∑

i

〈r|ψi 〉

ψ(r) =
∑

i

ψi (r)

◮ Good quantum numbers are eigenvalues of operators which
commute with the Hamiltonian; then we can have wave
functions which are simultaneously eigenvectors of the
Hamiltonian and of those additional operators.

◮ Recall atoms: In case of spherical symmetric potential,
Ĥ commutes with L̂2 and with L̂z , therefore we have quantum
numbers n, ℓ and m.
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The right symmetry operator for a crystal

For a crystal, hamiltonian commutes with the translation
operator TR, which is defined as

T̂R ψ(r) := ψ (r+ R) = ψ (r + n1a1 + n2a2 + n3a3) .

Translation TR leaves the Hamiltonian Ĥ unchanged.

Suitable complete set of state vectors:

Set of vectors which are simultaneously eigenvectors of the
Hamiltonian operator H and of the transitions operator TR.
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Bloch theorem (1)

Eigenstates of Hamiltonian can be chosen with a definite value of
the translation operator TR, which can then be used to identify
these eigenstates.

Eigenvalues tR of the T̂R operator:

T̂R ψ(r) := ψ (r+ R) = tR ψ(r) .

By using group properties of translations and requiring that the
wave function does not diverge, one gets tR = e

ik·R.

Bloch theorem:
ψ (r + R) = e

ik·R ψ(r) .

e
ik·R is the eigenvalue of the translation operator, k is the
corresponding quantum number.
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Bloch theorem (2)

Equivalent formulation: for a periodic potential, wave functions can
be written as

ψn
k(r) = e

ik·r unk(r) ,

where unk (r) has the periodicity of the crystal:

unk (r+ R) = unk (r) .

Eigenstates with the same eigenvalue of the translation operator
T̂R (which is eikR) but with different energies are distinguished by
an additional index n.

Analogy:

For an electron in a spherically symmetric potential, there is also

a “principal quantum number” n apart from the ℓ and m values (we have

got 2p states, 3p states, 4p states, . . . ).

12/62



Band structure: Bands of eigenvalues εnk
Wave function ψn

k(r) corresponds to energy εnk, i.e.,

Ĥ ψn
k(r) = εnk ψ

n
k(r) .

Reminder: k is linked to eigenvalues of translation operators T̂R.

For macroscopic (“infinitely large”) crystal, the wave vector k is
a continuous variable.

For finite systems, allowed values of k are discrete but dense (typically,
determined by Born-Karmán conditions). This is needed for theoretical
considerations. For praxis, think of k as continuous.

For each k there is a discrete set of eigenstates labeled by n.

We have thus bands of energy eigenvalues εnk. For each n there is
one band.

Spin s can be added onto it: εn,sk , ψn,s
k (r).
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Bands of eigenvalues εnk: Example

For each (semi)continuous k there is a discrete set of eigenstates
labeled by the index n.

http://en.wikipedia.org/wiki/File:Bulkbandstructure.gif

14/62

http://en.wikipedia.org/wiki/File:Bulkbandstructure.gif


Range of values of the quantum number k

The quantum number k is not uniquely defined.

Recall: if R is a lattice vector and K is a reciprocal lattice vector,
then e

iK·R = 1. Bloch theorem then reads:

ψ (r+ R) = e
ik·R ψ(r) = e

ik·R
e
iK·R ψ(r) = e

i(k+K)·R ψ(r)

⇒ k can be substituted by k
′

=k+K, where K is a
reciprocal lattice vector. Quantum numbers k and k

′

correspond to the same eigenvalues.

In this way, the wave vector k can be confined to a single primitive
cell in the reciprocal space.

Conventionally, we take the Wigner-Seitz cell as the defining primitive

cell in the reciprocal space. This cell is called the first Brillouin zone.
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More on Brillouin zones

Analogously to the first
Brillouin zone (BZ), one
can define second, third,
forth, . . . Brillouin zones.

Ashcroft, Mermin: Solid State Physics
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Reduced, extended, repeated zone scheme
k is not unique ⇒ more equivalent ways to describe

the band structure

extended zone

scheme

reduced

zone

scheme

repeated zone

scheme
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Naming conventions

Some points in the Brillouin zone are given special names.
Band-structure is usually shown along lines connecting these
points.

https://stackoverflow.com/questions/61995566

No science or mystique, just naming convention. . .
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Crystal momentum k

Bloch wave functions ψn
k(r) are not eigenvectors of the momentum

operator: Momentum is conserved only if there is a full translation

invariance, here we have only invariance w.r.t. lattice translations {Ri}.

However, ψn
k (r) are eigenvectors of the translation operator T̂R:

T̂Rψ
n
k(r) ≡ ψn

k(r + R) = e
ik·Rψn

k(r) .

Corresponding conserved quantity is the crystal momentum ~k.

Recall: States described by k can be describe also by k+K, so k can be

always restricted to the first BZ.

k is conserved up to a reciprocal lattice vector.

Crystal momentum ~k is an analogy to the momentum p but it is
not the same.
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BZ boundary is the space to watch. . .

Plane waves with wave vector k at BZ boundary satisfy the Bragg
condition (k+K)2 = k2, so they will undergo subsequent reflections.

Kittel: Introduction to Solid State Physics

Bragg reflections at BZ boundary

will make standing waves.

Waves ψ(+) and ψ(−) generate

different charge distributions, these

will lead to two different potential

energies.

The energy difference between the

standing waves ψ(+) and ψ(−) is

the origin to the energy gap Eg .
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Band structure of nearly free electrons

Energy of free electrons:

εnk =
~
2

2m
k2 .

If the crystal potential is weak, εnk differs
only slightly from the free electron case.

Main effects of the crystal potential:

1. The band structure can be folded
into the first BZ.

2. At BZ boundaries, minigaps in the
energy will appear.
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Real life example: aluminium

Band structure of aluminium is very close to free electron case.

Full lines represent energy band of aluminium, dashed lines represent

energy bands of a free electron.
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Density of states (1)

How to sum over all electron states?

For systems with discreet energy levels:

Total energy ETOT is obtained by a sum of energies εi over all the
occupied states,

ETOT =
∑

i

2 εi

(the factor 2 accounts for spin degeneracy).
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Density of states (2)

For system with continuous energy levels:

Total energy ETOT is obtained as an integral, weighting the
energy ε by the density of states n(ε)

ETOT =

∫

dε ε n(ε) .

Intuitively:
Density of state (DOS) describes how many electron states are
there at certain energy ε.

Formally:

n(ε) =
∑

n

∫

1BZ

dk

4π
δ(ε − εnk) .
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DOS for atoms

de
ns

ity
of

st
at

es

energy

Set of δ-functions:

n(ε) =
∑

j

δ(ε − εj) .

ETOT =

∫

dε ε n(ε)

=

∫

dε ε
∑

j

δ(ε − εj)

=
∑

j

εj
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DOS for aluminium (nearly free electrons)

E = p /2m2

DOS ∝ √E

Free electrons: Density of states
is proportional to

√
ε.

Aluminium: its nearly free
electron character gets revealed
in the DOS.
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DOS of clusters and DOS of crystals

Series of free Fe clusters of increasing size compared to bulk Fe:
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PRB 70, 174423 (2004)

Small clusters have atomic-like character.

If the size of the crystal increases, the character of the DOS approaches

the bulk.
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Band structure and DOS

The expression for DOS can be

transformed so that it includes

the band structure:

n(ε) =
∑

n

∫

1BZ

dk

4π
δ(ε− εnk)

=
∑

n

∫

Sn(ε)

dS

4π3

1

∇εnk

States with small ∇εnk
correspond to high DOS.

Peaks in DOS can be traced to local extrema of the band
structure εnk.
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Local density of states

Intuitively: Local density of states (LDOS) at r is

◮ the density of states with energy ε which results exclusively
from electron states at site r,

◮ the electron density at site r which results exclusively from
states with energy ε.

DOS n(ε) =
∑

n

∫

1BZ

dk
4π δ(ε − εnk)

LDOS n(r, ε) =
∑

n

∫

1BZ

dk
4π |ψn

k(r)|
2
δ(ε − εnk)

Integral of n(r, ε) over the unit cell gives total DOS n(ε).

LDOS reflects the spatial inhomogeneity of electronic structure in
a solid.
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Total DOS, local DOS, site-resolved DOS

nj(ε) =
∑

n

∫

1BZ

dk

4π

∫ Rj

0
r2dr |ψn

k(r)|2 δ(ε − εnk)
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2 Site-resolved DOS:
LDOS integrated inside
a sphere around specific
site at Rj

Heusler alloy MnAlCu2.

Projected not only
according to the site but
also according to the spin.
nj =

∑

s=±1/2 nj ,s
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Angular-momentum-projected site-resolved DOS

Atoms: distinguish between s (ℓ=0), p (ℓ=1), d (ℓ=2) levels.

Solids: projecting LDOS on angular momenta represented by spherical

harmonics Yℓm(n̂).

nj ,ℓm(ε) =
∑

n

∫

1BZ

dk

4π

∫ Rj

0
r2dr

∫

dn̂ |ψn
k(r)|2 Yℓm(n̂) δ(ε − εnk)

Usually summing over magnetic quantum numbers: nℓ =
∑

m
nℓm.
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Occupied and unoccupied states

Pauli exclusion principle: Electrons are fermions, so there can be
only one electron per state.

Spin degeneracy means that a state represented by particular n and
k can be occupied by two electrons at most.

In the ground state, electron states are being populated from
bottom up. Energy levels εnk will be occupied below a certain
energy and unoccupied above it.

In metals, this energy is called Fermi energy.

In molecules, it is called HOMO (highest occupied molecular
orbital).
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Band gap (1)

Band structure of silicon:
for some energies, there
are no corresponding
states ⇒ energy gap.

Band structure of aluminium: for each
energy there is a state ⇒ no band gap.
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Band gap (2)

Density of states:

Si
gap is present

Al
no gap
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Bloch spectral function A(k, ε)

Band structure: εk is an eigenvalue of operators Ĥ and T̂R.

Eigenstates of Ĥ are stationary (basic quantum mechanics), their lifetime is
infinite.

Probability that we find an electron with energy ε = εk and crystal
momentum k is one. Probability that we find an electron with energy and
crystal momentum outside the εk range is zero.

The Bloch spectral function A(k, ε) describes the probability that
an electron with crystal momentum k has energy ε.

For non-interacting electrons:

A(k, ε) = δ(ε − εk)

Density of states:

n(ε) =
∑

n

∫

1BZ

dk

4π
A(k, ε)
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Bloch spectral function A(k, ε)

On a half-way between band structure εnk and and the density
of states n(ε).

n(ε) =
∑

n

∫

1BZ

dk

4π
δ(ε − εnk)

n(ε) =

∫

1BZ

dk

4π

∑

n

δ(ε − εnk)

n(ε) =

∫

1BZ

dk

4π
A(k, ε)

Bloch spectral function A(k, ε) can be interpreted
as a k-resolved DOS.

A(k, ε) =
∑

n

δ(ε − εnk)

A(k, ε, r) =
∑

n

|ψn
k (r)|2 δ(ε− εnk)
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Intermezzo: Heisenberg uncertainly relations

Heisenberg uncertainly relation:
It is impossible to determine exactly both the position and the
momentum of an object.

∆x ∆px ≤ 1

2
~

Formally, it is a consequence that operators of position and
momentum do not commute.

Time-energy uncertainty relation:

∆E ∆t ≤ 1

2
~

Principally different from ∆x ∆px relation: ∆t is lifetime of the
state, not eigenvalue of an operator.

Quantum state that exists for only a short time cannot have a
definite energy.
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Blurring the spectral function A(k, ε)

What if the electron is not a true eigenstate of the single-particle
Hamiltonian satisfying the crystal periodicity?

Many body effects, disorder ⇒ finite lifetime of single-particle
electron state.

δ(ε− εk) A(k, ε)

Quantum state that exists for
only a short time cannot have a
definite energy.

Spectral function A(k, ε) is a generalization of the band structure.
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Generalizing the εn(k) picture

LeBlanc et al. PRB 83, 184506 (2011)

Band structure of a crystal in a single-electron picture: single sharp
δ-function-like peaks corresponding to εk.

Spectral function A(k, ε) of an alloy or when including many-body
effects: broadened Lorentzian-like peaks.

For practical purposes: View the Bloch spectral function A(k, ε)
just as a blurred generalization of the band structure εk.
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Example: band struture and Bloch spectral function

Behera et al. J Mater Sci Technol (2020)

Band structure:
fully ordered Ge2Sb2Te5 crystal

sharp lines

Sinha-Roy et al. PRB (2029)

Bloch spectral function:
disordered Ge2.005Sb2Te5 alloy

blurred lines, areas
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Wannier functions (1)

Bloch wave functions ψn
k (r) form a complete set of eigenvectors of

the periodic crystal Hamiltonian Ĥ .
However, one can choose other complete sets to describe the
system.

Bloch wave functions

ψn
k(r) = e

ik·r unk(r) ,

are delocalized.

By Fourier transforming the ψn
k(r) functions one gets Wannier

functions,

φnR(r) =
1√
N

∑

k

e
−ik·R ψn

k(r) .

The sum
∑

k
goes over the appropriate k values in the first Brillouin zone.

Wannier functions are localized (each of them at different site).
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Wannier functions (2)

Description of electronic states via Bloch functions and via
Wannier functions is equivalent.
Both sets form a complete orthonormal basis.

Bloch functions can be obtained from Wannier functions by a back
Fourier transformation,

ψn
k(r) =

1√
N

∑

R

e
ik·R φnR(r)

where
∑

R sums over all lattice vectors R of the crystal.

Individual Bloch wave functions or Wannier functions do not
necessarily describe any paricular electron.

They matter as a complete set (basis) which enables to describe
the system.

We just choose the basis so that is describes the system in the
most simple and intuitive way.
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Wannier functions vers. Bloch functions

Wannier functions are localized.

Bloch

https://www.flapw.de

Wannier

Wannier functions have been used lately in many practical
applicatins where the formally local approach is technically and
intuitively convenient.
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What is knowing the band structure good for?

Solid material is a mixture of ions and electrons.

Electrons act as glue that keeps the material together.

Properties of the electron glue determine to large extent the
properties of solids.

Ab-initio calculations of total energies:
given just atomic numbers of constituting atoms, structure and
properties of solids can be predicted.

To calculate the real (atomic) structure you need to know the
electronic structure.
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Finding ψn
k(r), ε

n
k, and V (r)

We need to solve the Schrödinger equation for an electron in a
given potential V (r).

1. The wave functions ψn
k(r) determine the electron density n(r).

2. The electron density determines the potential V (r).

3. The potential V (r) determines the wave functions ψn
k(r).

−→ Need for self-consistency between V (r) and ψn
k(r).

Compare with the lecture on DFT and LDA on 24th November.
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Self-consistent scheme: ψn
k(r) ⇔ V (r)

Solve the Schrodinger equation iteratively:

1. Start with an initial guess for the
charge density n(r).

2. Use density n(r) to generate the
potential V (r).

3. Solve the Schrodinger equation to get
the wave functions ψ(bmr).

4. Use wave functions ψ(bmr) to
generate the density n(r).

5. Go back to step 2 untill the initial
density and the final density to not
agree.
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How to solve Schrödinger equation (1)

[

~
2

2m
∇2 + V (r)

]

ψi(r) = εi ψi (r) .

Solving Schrödinger equation numerically in 3D is a killer.

The way to proceed: Transform it into a matrix equation, using a
suitable basis.

(There are other ways as well, e.g., the KKR and/or Green’s
function method.)
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How to solve Schrödinger equation (2)

Having a complete set of orthogonal functions {φi (r)},
any function ψ(r) can be written as ψ(r) =

∑

i ci φi(r).

Then, instead of
Ĥ ψ(r) = εψ(r)

we can solve
∑

j

Hij cj = ε ci

with matrix elements Hij

Hij :=
〈

φi |Ĥ |φj
〉

=

∫

drφ∗i (r)H(r)φj (r) .

Matrix diagonalization is a computer-friendly task.

Caveat: The sum
∑

j
is infinite (may even be continuous. . . ).
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How to solve Schrödinger equation (3)

Employing a basis set {φi (r)}, we have to find eigenvectors and
eigenvalues of an infinite matrix H,

∑

j

Hij cj = ε ci .

Methods based on this approach are called variational.

The trick:
Choose the basis functions {φi (r)} conveniently, so that only
a finite (and small) number of them describes the problem with
sufficient accuracy.

The choice of {φi (r)} thus depends on what kind of system and
what kind of property we are interested in.
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Which band structure method ?

We need to tailor our method to the problem.

There are no “universal” methods except for very simple problems (that
need not be solved anyhow).

Criteria governing which method to choose:

◮ Metal or insulator? Covalent or ionic?

◮ Electron states are localized or extended?

◮ High-symmetry or low-symmetry system? Layered?

◮ Ordered or disordered?

◮ Interested in ground-state or in excited state (spectroscopy)?

◮ . . .
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FLAPW method

Full potential Linearized Augmented Plane Waves method.
Considered (by some) to be the most accurate method.

Basis is made of augmented plane waves.
muffin-tin spheres: φ(r) ∼ ∑

ℓm aℓm Rℓ(r)Yℓm(r)
interstitial region: φ(r) ∼ e

ikr

◮ Linearized method: same basis for each energy, Taylor
expansion around the middle of the valence band.

◮ Accurate.

◮ Computer demanding, relatively slow.
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Plane waves methods

Plane waves eik·r form an orthogonal basis set in a space of
functions integrable in a volume V :

f (r) =

∫

V

dkF (k) eik·r ,

expansion coefficients are the Fourier components

F (k) =
1

V

∫

V

dr f (r) e−ik·r .

Plane waves are computer-friendly.

The potential has a singularity close to the nuclei and to
describe this singularity properly, on needs a huge number of plane
waves, making their use impractical.

This problem can be by-passed by introducing pseudopotentials.
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What is pseudopotential?

Operator simulating the effect
of [nucleus + core electrons]
on electronic states

in the energy range of interest
(i.e. not on any state!)

Requirements, expected properties:
◮ Sufficient accuracy in a wide energy range

(“transferability”)

◮ Real merit to computational efficiency
(“softness”)
◮ reducing the size of the basis set
◮ eliminating large energies of the core states
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Constructing a pseudopotential

Pseudo-wavefunction is identical to true atomic wave-function
outside the core region (for a given ℓ and E ):

ψPS
l ,E (r) ≡ ψtrue

l ,E (r) for r > RC .

Equal scattering properties in the neighbourhood of Eref .

Smooth pseudopotential means that the expansion of the wave
functions in terms of plane waves is efficient: one needs a relatively
small basis.
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Pseudopotentials: Looking under the bonnet

The calculation can be only as good as the pseudopotential is.

The issue of transferability, i.e., the ability to describe properly the
scattering on atom in different environments (e.g., Na atom can be
in metallic Na but also in ionic NaCl).

Whether the given pseudopotential is really suitable for a particular
problem is often hard to find out (and usually tacitly ignored).
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KKR-Green’s function method

Korringa-Kohn-Rostoker a.k.a. multiple-scattering method.

c

Old method, subsequently reformulated as
a KKR-Green’s function method.

KKR-Green’s function method does not
rely on a fixed basis.

◮ It is exact, specifically also concerning charge densities.

However, for energies and consequently also geometries the accuracy of

linearized methods is usually sufficient.

◮ It is relatively slow and somewhat cumbersome.

◮ Often used in its linearized version (LMTO).

◮ Green’s function → naturally suited for spectroscopy.

◮ Green’s function → naturally suited for many-body physics.
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LMTO method

Linear combination of Muffin-Tin Orbitals.

LMTO is linearized version of KKR.

Basis is formed as a combination of solutions of Schrödinger
equation inside the muffin-tin sphere.

As usually with linearized methods, it is tuned to a fixed energy
and Taylor expansion is used around.

Employment of the LMTO method often leads to quick results
even for complicated systems.

Disclaimer: The LMTO method is a powerful weapon in the hands
of a powerful (i.e., knowledgeable) person.
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Zoology of band structure methods (and codes)

◮ All-electron methods
Core and valence electrons are dealt with on the same footing.
◮ Augmented functions

◮ FLAPW (Fleur, Wien2k, Elk)
◮ KKR-GF (Jülich, München, Osaka, Ames, Oak Rigde, feff)
◮ LMTO (Stuttgart code and its derivatives, Turek in Brno)

◮ Localized orbitals
◮ LCAO (Crystal)

◮ Pseudopotential methods
Core electrons are (semi-)ignored — they are effectively merged
with the nucleus.

◮ Plane waves (Abinit, Quantum Espresso, Vasp,
Castep)

◮ LCAO (Siesta)

“Method” and “code” are (unfortunately) often used interchangeably.
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Picking the cherries: jumping from one method to another

Most often, pseudopotentials are used in connection with plane
waves codes (because the pseudopotential is weak and only
a decent number of plane waves are needed).

Common trick:
Use a plane waves pseudopotential code to optimize geometry
(quick but less accurate) and then use an all-electron (e.g.,
FLAPW) code to calculated electronic structure and other
properties (slow but accurate).
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Find the timetable and slides on the web

http://crysa.fzu.cz/ondra/teor-surf-phys
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