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Surface termination

B. Velický

◮ One-electron Schrödinger equation in 1D

[

− d
2

dx2
+ V (x)

]

ψα(x) = Eα ψα(x) ~ = 1, m = 1/2

◮ Termination: translation periodicity of the bulk stops abruptly.

◮ Neglect the atomic structure in the bulk: consider just the
barrier separating two constant potentials.
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Electron wave function in the presence of barrier

Solutions of Schrödinger equation in regions I. and II.

I. ψ = α e
ikx + β e

−ikx k2 = E + V

II. ψ = γ e−iκx κ2 = −E

Matching the wave functions and their derivatives:

ψ(0−) = ψ(0+) α + β = γ
ψ′(0−) = ψ′(0+) α − β = γ iκ/k

α = |α| ei∆

β = |α| e−i∆

γ = 2|α| cos∆

tan∆ = κ/k
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α = |α| ei∆

β = |α| e−i∆

γ = 2|α| cos∆
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Wave function is decays in the vacuum but oscillates in the bulk.

No restrictions on the energy.
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Surface states in a simple model (1)

Zangwill

One-dimensional
nearly-free electron model.

Reasonable for metals.

Recall the pseudopotentials.

[

− d2

dz2
+ V (z)

]

ψ(z) = E ψ(z)

Weak periodic potential: V (z) = −V0 + 2VK cos(Kz).

K = 2π
a

is the shortest 1D reciprocal lattice vector. VK is small.
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Surface states in a simple model (2)

Oscillatory part of the
potential VK is small.

Trial wave function combines just two plane waves:

ψk(z) = α e
ikz + β e

i(k−K)z .

Substitute ψk(z) into Schrödinger equation, neglect terms which
contain components other than e

ikz and e
i(k−K)z to get

[

k2 − V0 − E VK

VK (k − K )2 − V0 − E

] [

α
β

]

= 0
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Surface states in a simple model (3)

Forstmann

Interesting things happen at the Brillouin zone

boundary, which is at k = K/2.

Wave vector k in terms of deviation from the

BZ boundary: k = K/2 + κ.

Zangwill

Gap at κ = 0:

E = −V0 +

(

K

2

)2

+ κ2 ±
√

K 2κ2 + V 2
K

ψk = e
iκz cos

(

K

2
z + δ

)

For negative κ2, i.e., complex κ, there are
solutions of the Schrödinger equation also
within the gap.
However, they grow exponentially, hence are

not normalizable for a periodic bulk.
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Surface states in a simple model (4)

Semi-infinite problem:

ψ(z) = e
κz cos(

K

2
z + δ) z <

a

2

ψ(z) = e
−qκz z >

a

2

with q =
√
V0 − E .

Smooth matching of the wave
function across the interface requires

ψ′(a/2− 0)

ψ(a/2− 0)
=

ψ′(a/2 + 0)

ψ(a/2 + 0)

For the current model, this matching

is possible only for VK > 0.
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Surface states in a simple model (4)

Whether a surface state exists or not depends on fine details of the
electronic structure.

There is no entitlement to a surface state. It may exist or not.

Surface states generated in this way are sometimes called Shockley states.
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Dangling bonds and surface states

Potential of surface atom
deviates from potentials
of bulk atoms.

Dangling bond: an unsatisfied valence on
an atom.

Often at surfaces of semiconductors.

◮ Tight-binding model: nearest-neighbor
interaction only.

◮ Wave functions expressed as linear
combinations of atomic orbitals.

◮ Mixing of wave functions based on the
surface atom and on the bulk atom may
lead to a surface state.

Surface states generated through this
mechanism are often called Tamm states.

The distinction between Shockley and Tamm states
is somewhat arbitrary.
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How to modify Bloch wave functions (1)

Bloch functions in the bulk:

ψn
k(r) = e

ik·r unk(r) .

Wave function may not grow exponentially (must be normalizable)
⇒ k has to be real.

Presence of surface does not affect bulk Bloch states significantly
(surface represents only a tiny fraction of the crystal).

However, new solutions, previously forbidden, may arise:

If k is complex, we have a solution that grows exponentially for
either “r → ∞” or “r → −∞” (think in 1D. . . ).

This makes it unusable for the bulk. However, . . .
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How to modify Bloch wave functions (2)

Exponentially growing solutions are unusable in the bulk.

If presence of a surface is taken into account:

In the bulk region, we can take an exponentially growing solution
and at the surface (before it grows to infinity. . . ) match it with
another solution, which will decay exponentially with the distance
from the surface.

Such solutions are called surfaces states.
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Description of surface states

Translation periodicity perpendicular to the surface is broken.
It is retained in the direction parallel to the surface.

bulk surface

ψn
k(r) = e

ik·r unk(r) −→ ψn
k‖
(r) = e

ik‖·r‖ e
−κ·r⊥ unk‖(r‖)

un
k‖
(r‖) has the periodicity of the surface (in 2D).

Quantum number k‖ is restricted to the first 2D Brillouin zone.

The energy of a surface state εn
k‖

is different from the bulk

energy εn
k
for the same k‖ (because it has different [complex] k⊥).

Surface states appear where there are no bulk states.
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3D → 2D: Use r‖ instead of r, k‖ instead of k

Bravais lattices in 3D Bravais lattices in 2D

For surface states, k‖ is conserved up to a 2D reciprocal lattice
vector.
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Projecting Brillouin zones from 3D to 2D

To explore surface states, it is useful to project the bulk band
structure εn

k
= εn

k‖,k⊥
from the 3D Brillouin zone into the

corresponding 2D Brillouin zone.

The k⊥ direction thus collapses.
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Bulk band structure ε
n
k
projected into a 2D BZ

Grey shaded areas correspond
to regions where there are
bulk states with energy εn

k‖,k⊥
,

with k⊥ arbitrary.

Red lines describe surface
bands.

The energy of a surface state εn
k‖

is different from the bulk energy εn
k

for the same k‖ (because it has different [complex] k⊥).
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Surface states and surface resonances

J. Phys. C: Solid State
Phys. 9, 169 (1976)

Surface state:
Energy in the gap in k‖ space.

Exponential decay into bulk.

Surface resonance:
Energy overlaps with εn

k‖,k⊥
of bulk.

Merges a Bloch wave function.
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Example: surface states of Be(0001)

Surf. Sci. 188, 287 (1987)

Bulk εn
k

Projected εn
k‖,k⊥

plus surface states
and resonances
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Screening of charge: classically

In classical electrostatics, a charge
impurity in a pool of moving charges is
screened (e.g., in electrolyte).

Point charges move exactly in that position

where it is needs to be, as required by the

electrostatics.

Screening by moving charges results in
exponential decay of the concentration
of mobile charges, n(r) ∼ exp(−Kr)/r .

The charge perturbation may be a point
charge but also a surface.
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Screening in quantum mechanics: Friedel oscillations

Quantum physics: screening of the charge is oscillatory.

EF = ~
2k2

F/(2m), d is the dimensionality (d=1, 2, 3).

n(r) ∼ sin(2kF r)

rd

Formally:

Friedel oscillations result from the abrupt

cut-off of the states at EF .

Intuitive hand-waving argument:

Electrons participating in the screening are

not point charges but waves. Due to the

finite dimensions of the screening chunks,

some screening charge is “misplaced”,

which requires compensation by opposite

charges.

Charge at surfaces relaxes in an oscillatory way.
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Band narrowing (1)

Rule of thumb: the width of the band is roughly proportional to
the square root of the number of neighbouring atoms
(coordination number).

Local DOS in respective
layer.

surface

sub-surface

sub-sub-

surface (bulk)

Reduction of the

coordination number at the

surface leads to less

hybridization,

which means more

atomic-like character of

electron states,

which means narrowing of

bands at the surface.
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Band narrowing (2)

When going from bulk to the surface to the vacuum above it, the
electronic structure gradually changes.

Werner et al. 1975

Local density of states in the bulk, at
the surface and above the surface
calculated for a selfconsistent model
jellium potential.

Results for jellium model:

DOS for free electrons at the
surface reflects its localized
nature.

DOS for free electrons in the
three dimensions goes like

√
E .
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Band bending (1): semiconductor and metal

Doped semiconductor: chemical
potential is close to the bottom of
the conduction band.

Mark Greiner

Electrons flow from doped n-levels of the semiconductor to the metal

until the chemical potentials equilibrate and a barrier forms.

To move an electron from the semiconductor to the metal hence requires

additional energy to overcome this barrier.

Corresponding energy levels in the metal are higher than in the
semiconductor: the bands are bent “upwards” to higher energies
when approaching the metal.
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Band bending (2): semiconductor and suface state

Suppose that a surface state exists
in the middle of the gap.
Its local chemical potential is lower
than the chemical potential of the
doped semiconductor.

Mark Greiner

Electrons flow from doped n-levels of semiconductor to the surface state

until chemical potentials equilibrate and a barrier forms.

The energy of the surface state increases with respect to what it would

be for an undoped semiconductor.

The energy bands of an n-doped semiconductor are bent upwards
to higher energies when approaching the surface.

For a p-doped semiconductor, they are bent downwards.

This occurs only for doped semiconductors.
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Dealing with surfaces: Supercell calculations

http://www.tcm.phy.cam.ac.uk/castep

simulating an adsorbate
on the surface
by repeating the supercell

Create a surface “artificially”, by forcing
a periodicity to the non-periodic system.

Advantage: Using all the polished tools
for bulk calculations.

Sometimes, the articial periodicity leads to

issues.

Other techniques dealing with a truly

semi-infinite system can be used (e.g.,

Green function methods).
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Dealing with surfaces: Green’s function method

Korringa-Kohn-Rostoker a.k.a. multiple-scattering method.

c

Reformulated version as
KKR-Green’s function method.

◮ Relatively slow and somewhat cumbersome.

◮ Efficient when treating surfaces, adsorbates, disorder.
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Crash course on Green’s functions: mathematics

Linear differential operator Lx (e.g., − d2

dx2
− V (x)), equation

Lx u(x) = f (x) . (1)

If we define Green function G (x , x ′) as a solution of

Lx G (x , x ′) = δ(x − x ′) , (2)

then solution of Eq. (1) can be obtained as

u(x) =

∫

G (x , x ′) f (x ′)dx ′

because

Lx

(
∫

G(x , x ′) f (x ′)dx ′
)

=

∫

LxG(x , x ′) f (x ′)dx ′ =

∫

δ(x − x ′) f (x ′)dx ′ = f (x)

Solution to Eq. (2) is not unique.
Particular Green’s function is determined by boundary conditions.
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Crash course on Green’s functions: quantum theory (1)

Hamiltonian of unperturbed (here: free electron) system:

H0(r) = − ~
2

2m
∇

2

H0(r)ψ0(r) = E ψ0(r)

Homogeneous linear differential equation:

(E − H0(r))ψ0(r) = 0 .

Corresponding Green’s function G0 is determined by

(E − H0(r)) G0(r, r
′) = δ(r − r

′)

G0(r, r
′) =

1

E − H0(r)
δ(r − r

′)

A kind of “±iǫ” term is typically added to the denominator. It specifies the
type of Green’s function via boundary condicions (retarded, advanced, lesser,
greater, god-knows-which, . . . ).

31/38



Crash course on Green’s functions: quantum theory (2)

Consider a system “perturbed” by the potential V (r).

In practice, V (r) may represent a surface, an adsorbate, an impurity, or

many-body effects.

(H0(r) + V (r)) ψ(r) = E ψ(r)

Inhomogeneous differential equation:

(E − H0(r)) ψ(r) = V (r)ψ(r)

Schrödinger equation can be transformed to an integral form by
employing the Green’s function G0(r, r

′) of the unperturbed system,

ψ(r) = ψ0(r) +

∫

dr
′ G0(r, r

′)V (r′)ψ(r′) .
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Crash course on Green’s functions: quantum theory (3)

Hamiltonian H(r) = H0(r) + V (r), corresponding Green’s function
G (r, r′):

(E − H0(r) − V (r)) G (r, r′) = δ(r − r
′) ,

G (r, r′) =
1

E − H0(r) − V (r)
δ(r − r

′) .

Green’s function of the perturbed system G (r, r′) can be expressed
in terms of Green’s function of the unperturbed system G0(r, r

′)
via the Dyson equation:

G (r, r′) = G0(r, r
′) +

∫

dr
′′ G (r, r′′)V (r′′)G0(r

′′, r′) .

Knowing G (r, r′), we can write the wave function ψ(r) as

ψ(r) = ψ0(r) +

∫

dr
′ G (r, r′)V (r′)ψ0(r

′) .

33/38



Why Green’s functions?

Working with Green’s functions does not bring anything really new.

Nominally, it is just another formal complication to please the

mathematical gods.

However, working with Green’s functions is (often) practical:
various approximations can be more easily introduced and
step-by-step improved in the Green’s functions formalism.

Green’s function relates to response function: it describes how
ψ0(r) respond to perturbation V (r) to change into ψ(r).
Natural framework for transport, spectroscopy and so on.

Spectral function A(ε) is related to retarded Green function:

A
mm

′ (ε) := − 1

π
ImG

(+)

mm
′ (ε)
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Surfaces via Green’s function methods

Proper semi-infinite system, no supercell.
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Phys. Rev. B 82, 174414 (2010)

Bloch spectral function: generalization of

the band-structure for non-periodic systems

Surface of a 14-layers slab.

Surface of a 38-layers slab.

Surface of a semi-infinite layer.
Only true surface states and resonances
remain, no spurious bands.
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Adsorbates and impurities

Pt

Co

Green’s function formalism:

Embedded cluster in an
infinite host.

For small impurities such as adatoms, supercell techniques can be
used without creating any “issues”.

However, when dealing with clusters of hundreds of atoms, Green’s
function formalism is more suitable.
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Disorder: Dealing with substitutional alloys

1. Simulating random occupation of sites via
supercells:

Exact if the supercell is large enough.

Computationally cumbersome.

2. Coherent potential approximation (CPA):

= x
A + xB =

Mean-field approach: define a suitable effective medium so that the
scattering properties of its artificial atom reproduce scattering
properties of the original atoms in this medium.

Formulated in terms of Green’s function. Computationally efficient.
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Find the timetable and slides on the web

http://crysa.fzu.cz/ondra/teor-surf-phys
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